Review

```
REACTIONS OF GROUP IVE ORGANOBIMETALLIC COMPOUNDS
WITH ELECTROPHILIC REAGENTS
S.I.BOBROVSKII and Yu.G.BUNDEL
Chemical Department, Moscow State University,
Moscow 119899 (USSR)
(Received April 4th, 1990)
CONTENTS
   Introduction
   I.
        Halogens
   II.
        Acids
   IIT. Lewis acids
        Tetracyanoethylene and other I-acceptors
   IV.
   v.
        Peroxide compounds
   VI.
        Electrophilic (and oxidizing) reagents of other types
   Conclusions
   References
```

INTRODUCTION

The chemistry of organobimetallic compounds of the IVB group (OBMC, general formula $R^1 R^2 R^3 MM' R^4 R^5 R^6$, with M,M' = Si, Ge, Sn, Pb) is an active field of study. Nucleophiles, free radicals, alkali and alkaline-earth metals have been shown to react with OBMC, generally with M-M bond breaking. On the other hand, electrophiles are capable of splitting both M-M and M-C bonds, depending on the nature of the OBMC and the reagent involved. Until now there has been no analytical review of the reactions of OBMC with electrophiles, although this field is, beyond doubt, of theoretical and practical interest.

There are several reviews and monographs dealing with the chemistry of M-M bond compounds. For example, disilanes were discussed in the reviews [1-4] and books [5]; reactions of digermanes were mentioned in reviews [6,7]; the tin-containing OBMC - in the review [8] and monographs [9]; diplumbanes - in monograph [10]. A number of more specific review papers concerning OBMC chemistry was published [11]; see also [12]. Unfortunately most

of these reviews are out of date now; some are not comprehensive. The reaction mechanisms and reactivity aspects are rather poorly discussed in the majority of reviews.

The present review deals with the reactions of OBMC with electrophilic reagents, the data being subdivided according to the types of electrophiles. Within each Section the data are presented (as far as it is possible) in the following sequence: Si - Ge - Sn - Pb. In Section III considerable attention is paid to the disproportionation reactions of the R_5M_2X and $R_4M_2X_2$ derivatives (involving α -elimination of the bivalent intermediates R_2M), which is essential for understanding the detailed reaction mechanisms of tin and lead OBMC with Lewis acids, including Lewis-acid-induced disproportionation of Sn_2R_6 and Pb_2R_6 . The reactions of OBMC with (and catalyzed by) transition metal complexes, as well as the processes of carbene (and their analogues - GeCl₂, SO₂, etc.) inclusion, fall beyond the scope of the present review. Generally, principal emphasis will be placed on the mechanisms of the reactions studied.

I. HALOGENS

Halogenation of many OBMC was carried out. In all cases M-M bond breaking was observed, while the M-C bonds are usually not affected:

 $R^{1}R^{2}R^{3}M-M^{1}R^{4}R^{5}R^{6} + Hal-Hal^{1} - R^{1}R^{2}R^{3}MHal + R^{4}R^{5}R^{6}M^{1}Hal$

Below are listed the OBMC and Hal₂ which react according to the preceding Equation: $Si_2Me_6-Cl_2$, Br_2 , I_2 [31,32]; $Me_2EtSiSiMeEt_2 - Br_2$ [32]; $Si_2Et_6 - Br_2$, I_2 [35]; $ClCH_2(SiMe_2)_2Cl-Br_2$ [86]; Ph,Me, Cl-containing disilanes - Cl_2 [36]; $Et_3SiGePh_3$ and $Ph_3GeSnMe_3 - Br_2$ [34]; $Ph_3SiSnMe_3 - Br_2$ [37]; $Ge_2Et_6 - Br_2$ [38]; $Ge_2Vy_6 - Br_2$ and I_2 [95]; $(Me_2GeVy)_2 - I_2$ [96]; mixed alkylmethyldigermanes - Br_2 [39]; $(R_2GeCl)_2 - Hal_2$ [79]; $Et_3GeGeEtBuCl$ and $ClEt_2GeGeEt_2Bu - Cl_2$ [80]; $Ph_3GeSn(OAc)_3 - Br_2$ [40]; $GeSn(OAc)_6 - I_2$ [40]; $Sn_2Me_6 - Br_2$ and I_2 [24,42]; $Sn_2Et_6 - I_2$ [225]; $Sn_2Bu_6 - Cl_2$ [44]; $Sn_2(i-Bu)_6 - I_2$ [54]; $Sn_2(e-C_6H_{11})_6 - Br_2$ and I_2 [45,49]; $(c-C_6H_{11})_3SnSn(i-Pr)_3 - Br_2$ [136]; $Sn_2(CH_2Ph)_6 - I_2$ [46]; $Sn_2Ph_6 - Br_2$ and I_2 [47,48,139]; $Sn_2(4-ClC_6H_4)_6 - Br_2$ and I_2 [50]; $Et_5Sn_2Cl - Br_2$ [55]; $(PhCO_2SnPh_2)_2$, $(PhCO_2SnBu_2)_2$ and $(Bu_2SnOAc)_2 - Br_2$ [55-57]; $(Cl_2SnOAc)_2 - Cl_2$ [58]; $Sn_2(OAc)_6 - Br_2$ [58]. The thermochemistry of the halogenolysis of Sn_2Me_6 was studied:

Sn₂Me₆ + Hal₂ ----- 2Me₃SnHal;

 $\Delta H=(-70,24\pm0,5)$ kcal/mol for Br₂; $\Delta H=(-44,02\pm0,7)$ kcal/mol for I₂ [109].

Et₃GeSnMe₃ [42], Sn₂Et₆ [27,54], Sn₂Bu₆ [54,210], Sn₂(i-Bu)₆, Sn₂Ph₆, Ph₃SnSnR₃, Et₃SnSn(i-Bu)₃ and Me₃SnSnEt₂(CH₂)₅SnEt₂SnMe₃ [54], (i-Bu₂SnCl)₂ [27], (Ph₂SnCl)₂ [230], (Bu₂SnF)₂ [288], Me₅Sn₂Br [278], Et₅Sn₂Br [278,314] and Ph₃GePbR₃ [41], can be qualitatively titrated with halogens. Unambiguous reactions of OBMC with halogens were suggested for determining quantitatively Sn₂Et₆ (with I₂) [81,82], and Sn₂Et₆, Sn₂Pr₆, Sn₂Bu₆ and Me₃SnSnPh₃ (with Br₂) [82]. The method allows one to determine quantitatively Sn₂Me₆ in the presence of Me₄Sn (bromination) 84, and Pb₂Et₆ in Et₄Pb (iodination) [85,279].

Iodine was found to be unreactive towards Si_2Ar_6 [61,63,78], Ph_3SiGePh_3 [65] and Ge_2Ph_6 [66], perhaps because of the steric hindrance. Bromolysis of Si_2Ph_6 gives Ph_3SiBr [67]; Ge_3Ph_6 is brominated (no faster than Ph_4Ge), affording Ph_3GeBr [62]. $\text{Ge}_2(\text{C}_6\text{F}_5)_6$ reacts with I₂ in the presence of ZnCl₂ only to produce (C₆F₅)_3GeCl and ZnI₂ [201]. Iodolysis of Ph_3GeSnPh_3 gives Ph_3GeI [71]. Iodolysis of the Sn-Sn bonds in organoditins with the bulky substituents - Sn_2Bu_6^t [72], $\text{Sn}_2(\text{CH}_2\text{Bu}^t)_6$ [73], $\text{Sn}_2(9-\text{Phen})_6$ [169] - takes place at slow rates. On the other hand, iodolysis of (Bu $_2^t\text{SnPh})_2$ [72], $\text{Sn}_2(\text{CH}_2\text{CH}_2\text{Bu}^t)_6$ [74], and $\text{Sn}_2(2.4.6-\text{Me}_3\text{C}_6\text{H}_2)_6$ [53], as well as iodolysis and bromolysis of $\text{Sn}_2(2-\text{PhC}_6\text{H}_4)_6$ [49] and $\text{Pb}_2(\text{CH}_2\text{Bu}^t)_6$ [75,76] proceed readily to yield R₃MHal.

For early investigations of Pb_2R_6 halogenolysis see [10]. The reactions of Pb_2Bu_6 with either Br_2 or I_2 (in Et_20 , at $-60^{\circ}C$) were found to give Bu_3PbHal , while at $-10^{\circ}C$ - in Bu_2PbHal_2 , as a result of a subsequent halogenolysis of Bu_3PbHal . Halogenolysis of Pb_2Ph_6 proceeds in a more complicated way; Ph_4Pb and PbI_2 , along with the Ph_3PbI , are the main products. The yield of Ph_3PbI was raised to 90% by adding KI. The presence of two reaction pathways was assumed:

2Ph₃PbI - Pb₂Ph₆ + I₂ PhI + Ph₅Pb₂I;

the Ph_4Pb and PbI_2 formation is the result of disproportionation of Ph_5Pb_2I [91]. The Pb - C bond breaking in Pb_2Ar_6 is the only known example of M - C bond halogenolysis upon interaction of OBMC with halogens; normally, the electrophilic halogen molecule affects the M-M bond.

The Ge-Ge-bond is broken in bromolysis reactions of digermacycloalkanes with the following order of reactivity: $\operatorname{Ge}_{2}\operatorname{Et}_{6} \ll \operatorname{Et}_{2}\operatorname{Ge}(\operatorname{CH}_{2})_{4}\operatorname{Ge}\operatorname{Et}_{2} < \operatorname{Et}_{2}\operatorname{Ge}(\operatorname{CH}_{2})_{3}\operatorname{Ge}\operatorname{Et}_{2}$ which is accounted for by the strain of the Ge-Ge bond within a ring [197]. Bromine and iodine split the Si-Si-bond in RMeSiSiMe2CH2CH2CH2 (R=Pr,i-Pr) [137]. Halogenolysis of Me_SiSiMe_CH_CH_ results in HalMe_SiCH_CH_SiMe_Hal (Hal=Cl, Br); the chlorination at room temperature proceeds with inflammation, and only at low temperatures was it possible to isolate the final product in 85% yield [99]. In the same manner HalSiMe₂CMe₂CMe₂SiMe₂Hal(Hal=Cl,Br) were obtained from Me_SISIMe_CMe_CMe_ [271]. Bromolysis of the Si-Si bond in 1,2--bis-(trimethylsilyl)-3,3,4,4-tetramethyl-3,4-disilacyclobutene [98] and 9,10-dimethyl-9,10-disiladecalin [100] was described. Reaction of Me_SiSiMe_CH_CH=CHCH_ with Br_ leads to CH_=CHCH= =CHSiMe,SiMe,Br and (Me,SiBr), without bromolysis of the Si-Si--bond [101].

 Si_2Me_6 reacts readily with Cl_2 in the dark (in gas phase) to form a single product:

 $Si_2Me_6 + Cl_2 \longrightarrow 2Me_3SiCl^{\Xi}$.

The "hot" molecules of Me_3SiCl^{π} formed via the exothermic reaction loose their energy upon colliding with the CH_4 molecules, which are added to the reaction mixture [110]. Organic halodisilanes react with halogens only slowly or do not react at all [103-105].

Reactions of a series of $MM'Me_6$ (M,M'=Si,Ge,Sn) with halogens were studied [111]. Reactions of $Me_3MSnMe_3(M=Si,Ge)$ with ICl produce Me_3SnI and Me_3MCl . The product composition is controlled by the complementary influence of the secondary processes of interhalogen displacement upon the main process of the M-M' bond halogenolysis; this kinetic control is determined by Pearson's HSAB relation [112]. The OBMC reactivity in reaction with ICl follows the sequence

 $Me_3SnGeMe_3 > Me_3SnSiMe_3 \gg Me_3SiGeMe_3 > Ge_2Me_6 > Si_2Me_6$.

The halogen reactivity has the following order: $Br_2 > ICl > I_2$. The reactions of a series of organodisilanes with halogens in CCl_4 solution were studied [113]. The kinetic and activation parameters for the bimolecular processes are presented in the Table. The mechanism suggested involves a four-center cyclic transition state. The data in the Table show that the substitution of alkyl groups by Cl decelerates drastically the halogenolysis rate. The sequence of halogen reactivity is the usual one: $Cl_2 > Br_2 >> I_2$. For bromolysis of $(Me_2SiPh)_2$ in CCl_4 the ionic mechanism is suggested (but not established) to involve the formation of Me_2PhSi^+ , $Me_2PhSiBr$ and Br^- [115]. For iodination of Sn_2Ph_6 in cyclohexane a molecular process is suggested, involving a 4-membered cyclic transition state [114].

The kinetics of Sn₂R₆ iodolysis was investigated and discussed [117,120]; the reactivity sequence is as follows [120]:

$$s_{n_2}Me_6 < s_{n_2}Et_6 > s_{n_2}Pr_6 > t_3s_ns_nPh_3 > s_{n_2}Ph_6 > s_2(4-MeC_6H_4)_6.$$

Iodolysis of a wide range of OBMC was also investigated [118]. The silicon- and germanium-containing OBMC were shown to react with iodine with measurable rates in PhCl (see Table). In the case of tin-containing OBMC which react very readily, I⁻ was added. The authors of [118] discussed the influence of substituents upon the rate of OBMC iodolysis (steric and inductive effects). As can be seen from the data presented in [118,120], the reactivity of Sn_2R_6 , which has approximately the same order of magnitude for the whole series of Sn_2Alk_6 , diminishes on going over to $Alk_3SnSnAr_3$, and, especially, to Sn_2Ar_6 . Carboxylates (RCO₂SnPh₂)₂ are split by iodine to give RCO₂SnPh₂I. The reaction rate reduces with increasing electronegativity of the R group: $CF_3 < CCl_3 < CHCl_2 < CH_2Cl < CH_3$. It was pointed out that Sn_2Ph_6 is iodinated under the same conditions much more readily than the carboxylates [121].

The investigation of complexation and chemical reactions in the systems $\text{Si}_2\text{Alk}_6-\text{Hal}_2$ was carried out in 1979-1982 [160-162]. It was established for the first time that Si_2Me_6 and Si_2Et_6 do form donor-acceptor complexes (DAC) with Br₂ and I₂ (e.g., in $\text{CCl}_4: \text{Si}_2\text{Me}_6\cdot\text{Br}_2 \lambda_{\text{max}}^{\text{CTB}} = 295 \text{ mm}; \text{Si}_2\text{Me}_6\cdot\text{I}_2 - 297 \text{ nm}; \text{Si}_2\text{Et}_6\cdot\text{I}_2 - 300 \text{ nm}$. Similar DAC with halogens are formed also with Alk₄Sn [164,165], Et₄Ge [160,162,165], Me₄Si [160-162] and Et₄Si [160--162,165], the λ max values for Alk₄Si being shifted to short

OBMC	Hal ₂	Solvent	k ₂ (T ^o C)	Eact	∆S≠	ref.
	-		l/mol.s	kcal/mol	. e.u.	
Si ₂ Me ₆	Br ₂	CCl	2,5 (23,5°)	10,2	24,6	161,162
20	2	+	1,26 (20 ⁰)	-	-	203
		$(ClCH_2)_2$	8,1 (23,5 ⁰)	9,2	25,5	161,162
(Et ₂ SiMe) ₂		ccı	0,334 (20 ⁰)	5,2	43,1	113
Si2Et6		ccı	0,24 (23,5 [°])	10,4	28,7	161,162
2 0		(C1CH ₂) ₂	0,25 (23,5 ⁰)	8,7	33,8	161,162
(Me ₂ SiPh) ₂		CCI	21,00 (25 ⁰)	10,52	25,40	115
2 2		4	1/mol·min			
Me ₅ Si ₂ Cl		CCl	0,058 (20 ⁰)	9,2	33,1	113
(Me,SiCl),		cci	3,00.10 ⁻³ (20 ⁰)	11,9	29,1	113
Si2Me	I ₂	CCI	3,34.10 ⁻⁴ (20 ⁰)	10,5	39	113
2 0	-	(C1CH ₂) ₂	3,5.10 ⁻³ (23,5°) 9,7	39,3	161,162
		C ₆ H ₅ Cl	9,7.10 ⁻⁴ (20°)	14,2 18	zPZ=7,5	118
(Et ₂ SiMe) ₂		CC1,	2,46.10 ⁻⁴ (20 ⁰)	11,7	35	113
SizEt		C ₆ H ₅ Cl	7,0.10 ⁻⁵ (20°)	15,1 18	gPZ=7,2	118
PrSi2Me5		CC1,	$4,00.10^{-4}(20^{\circ})$	7,9	47	113
Sig(i-Pr)6		C ₆ H ₅ CI	< 10 ⁻⁵ (40°)			118
Me ₅ Si ₂ Cl		čcí,	7.10 ⁻⁵ (30°)			113
(Me,Sicl),		CCI	very slow			113
Ge2Me6		C ₆ H ₅ Cl	0,183 (20 ⁰)			118
MeaGeEta		с ₆ н ₅ с1	9,2.10 ⁻² (20 ⁰)	9,0 18	zPZ=5,8	118
Ge2Et6		с _б н ₅ сі	6,35.10 ⁻² (20 ⁰)	9,7 18	zPZ=6,0	118
Et3GeSnEt3		с ₆ н ₅ с1	very fast			1 1 8

Table

wave region compared to those for Si_2Alk_6 . It appears that the electron-donor in the DAC $[\text{Si}_2\text{Alk}_6 \longrightarrow \text{I}_2]$ is the Si-Si bond, which has a low ionization potential (IP). A linear correlation between $\text{E}_{\text{CT}}(=\text{hc}/\lambda)$ and IP of 5-donors was established [160,162].

The kinetic equation of halogenolysis: $W=k_2 [Si_2R_6][Hal_2]$ involves no third-order term. Radical inhibitors of various types show no effect upon the reaction rate; evidence was suggested to favour the molecular pathway for the hexaalkyldisilanes' halogenolysis, involving no radical, or ionic intermediates [161,162].

The probable stereochemical results of the halogenolysis of M_2R_6 were also theoretically examined [162,163].

The kinetics of bromolysis of a series of Si₂R₆ in CS₂ soluti-

on was studied [116]. Stepwise replacement of methyl groups by phenyl groups reduces the reactivity of Si_2R_6 . As one may expect, $4-FC_6H_4$ -substituted disilanes reacted slower than their Ph-analogues.

SCF CNDO calculations have been published [170] for the reaction ${\rm Si_2H_6} + {\rm Cl_2} - 2{\rm SiH_3Cl}$. Assuming a 4-membered planar symmetric cyclic transition state the ${\rm E}_{\rm act}$ value was found to be 31.5 kcal/mol, which falls within the range of experimental ${\rm E}_{\rm act}$ values for the ${\rm Si_2R_6}$ halogenolysis reactions (see Table). To investigate the reactivity of Si-Si-bonds in chlorolysis, MO--analysis of ${\rm Si_2Me_6}$ and permethylpolysilanes was carried out [151].

II. ACIDS

Electrophilic dealkylation (dearylation) is one of the powerful synthetic approaches in organo-silicon chemistry. The first important results in the field were reported by Kumada et al. They showed that the reaction of Si_2Me_6 and H_2SO_4 with subsequent treatment with NH₄F (NH₄Cl) gives Me_5Si_2X and $(Me_2SiX)_2$ [178]. In such a way ClCH₂SiMe₂SiMe₂OSO₃H [232] and ClCH₂SiMe₂SiMe₂Cl [86] were obtained from ClCH₂Si₂Me₅; (Me₂GeCl)₂ and (Bu^tMeGeCl)₂ from Ge₂Me₆ and (Me₂GeBu^t₂)₂ [105]. It was found that the Ph-group is cleaved from phenylmethyl disilanes: Me₃SiSiMe(Ph)CH₂Br is transformed into Me₃SiSiMe(Cl)CH₂Br and PhMe₂SiSiMe₂CH₂Br into ClMe₂SiSiMe₂CH₂Br [195]. Me₃SiSiMeCl₂ is obtained from Me₃SiSiMePh₂ under the action of H₂SO₄/NH₄Cl, HCl or HCl/AlCl₃ [192,215,297].

The protolysis of disilacycloalkanes was studied using the system H_2SO_4/NH_4HF_2 [188]. So, 5- and 6-membered rings react at the Si-Si bond only:

 $Me_2Si(CH_2)_nSiMe_2 \longrightarrow FMe_2Si(CH_2)_nSiMe_2F$ (n=3,4) Protolysis of the 7-membered ring gives a mixture of products: $Me_2Si(CH_2)_5SiMe_2 \longrightarrow C_5H_{11}SiMe_2SiMe_2F + Me_2Si(CH_2)_5SiMeF +$ $+ FMeSi(CH_2)_2SiMeF + C_5H_{11}(Me)SiFSiMe_2F + FMe_2Si(CH_2)_5SiMe_2F$ At 17-18°C the first two compounds are the major products. At 35°C all the products are generated in approximately equal quantities, the total yield being 7%. These results are accounted for by the strain of the Si-Si-bond within 5- and 6-membered rings. The 7-membered ring lacks such a strain, that is why the electrophile attacks the Si-Si-bond, as in the case of Si_2Me_6 , and the reaction with H_2SO_4 proceeds at the same rate as with Si_2Me_6 . The strained 5- and 6-membered rings react with H_2SO_4 more readily; electrophiles attack the Si-Si-bond [188].

The phenyl-containing disilane I by similar treatment affords the difluoride II , whereas the subsequent treatment with NH_4Cl affords the dichloride III [186,190]. The last compound can also be obtained when I is treated with HCl in the presence of AlCl₃ [190]. Similarly, PhMeSi(CH₂)₅SiMePh reacts with H_2SO_4/NH_4HF_2 to give FMeSi(CH₂)₅SiMeF. On the other hand, the compound IV is transformed into (BuMeSiF)₂ under the same conditions [64]. In this case the Si-Si-bond, which is not incorporated into the ring, is unaffected.

Reactions of organodisilanes with hydrogen halides occur (in the absence of catalyst) only at high temperatures and result in Si-Si-bond breaking. Thus, Si_2Me_6 reacts with HCl at 350-400°C to yield Me_3SiCl and Me_3SiH; Me_5Si_2Cl yields (at 500°C) Me_3SiCl and Me_2SiHCl [64,206]. Reaction of the "disilane fraction" (containing mainly (MeSiCl_2)_2 and Me_SiClSiMeCl_2) with HCl produces MeSiCl_3. Me_SiCl_2 and MeSiHCl_2 [18]. Reaction of H_3PO_4 with the "disilane fraction" gave Me_SiCl_2 and MeSiCl_3; the products of the reaction with (NH_4)_3PO_4 or (NH_4)_2HPO_4 are Me_SiCl_2. MeSiHCl_2 and Me_SiHCl [211].

In the presence of the catalysts AlHal₃, hydrogen halides dealkylate organodisilanes. For example, reaction of Si₂Me₆ with HCl-AlCl₃ at 20°C produces Me₅Si₂Cl; at 50-60°C - (Me₂SiCl)₂; at 90°C - Me₃Si₂Cl₃ [196]. Similarly, from the "disilane fraction" (MeSiCl₂)₂ can be obtained [212,213]; methylchlorodisilanes $Me_nSi_2Cl_{6-n}(n=3-5)$ and (Me₂SiCl)₂ yield (MeSiCl₂)₂ and Me₃Si₂Cl₃ respectively [213,214]. The loss of one or several Ph-groups was observed in the reactions of HHal (either in the presence or in the absence of AlHal₃) with the Ph-containing silicon and germanium OBMC [20,43,90,100,108,192,215-222,250]. The reaction of Ge_2Ph_6 with HCl leads to $(Ph_2GeCl)_2$ [220], but Ph_3GeCl was obtained in the presence of AlCl₃ [92].

By the action of H_2SO_4 on $Me_5Si_2C(Me)=CH_2$ the initially formed carbocation undergoes rearrangement:

 $Me_3Si - SiMe_2 - CMe_2^+ - Me_2Si^+ - CMe_2 - SiMe_3$

The following products can be isolated: $Me_3SiCMe_2SiMe_2OH$ (after treating with H_2O), or a mixture of $Me_3SiCMe_2SiMe_2F$ and $Me_2C(SiMe_2F)_2$ (after treating with NH_4F). Similarly, protolysis of $[Me_2SiC=CH_2]_2$ gave $Bu^{t}MeFSiCMe_2SiMe_2F$, $Me_2C(SiMe_2F)_2$ and propene; protolysis of $CH_2=C(Me)(SiMe_2)_3C(Me)=CH_2$ gave $Me_2Si(CMe_2SiMe_2F)_2$ [196]. $Ph_3SiSiMe_2CPhBr_2$ When hydrolyzed gives rise to $Ph_3SiCPhBrSiMe_2OH$; in this latter case the Ph_3Si group migrates within the intermediate cation $Ph_3SiSiMe_2CPhBr^+$ [149].

In a number of cases the Si-Si- and Si-C-bonds take no part in the reactions of organodisilanes with acids. Thus $(Me_2SiCH_2OMe)_2$ reacts with KI/H₃PO₄ to give MeOCH₂(SiMe₂)₂CH₂I and $(Me_2SiCH_2I)_2$ [195]; protodemercuration of RMe₂SiSiMe₂CH₂HgR' under the action of HCl has been studied [187]. Reaction of H₂SO₄ with (PhEtPrSi)₂ yields PhH; (PhCH₂SiEtPr)₂ is transformed into (EtPrSiCH₂C₆H₄SO₃H)₂ [102].

Protolysis of the disilacyclohexene $Me_2SiSiMe_2CH_2CH=CHCH_2$ proceeds with ring cleavage to give $CH_2=CHCH_2CH_2SiMe_2SiMe_2X$ (X=Br, HCO₂, AcO, EtCO₂) [101,200]. Reaction of $F_2SiSiF_2CH_2CH=CHCH_2$ with HF yielded cis-2-butene [204]. The strained 3- and 4-membered cyclic disilanes are generally reactive even towards weak acids. Thus $Me_2SiSiMe_2CH_2CH_2$ reacts with HCl and HBr giving $Me_2SiHCH_2CH_2SiMe_2X$, while the reaction with MeOH produces $(MeOSiMe_2CH_2)_2$ [99]. Protolysis of the Si-Si-bond in $Me_2SiSiMe_2CMe_2CMe_2$ was also reported [271]. Other examples are presented below:

$$(Me_{3}Si)_{2}C=C=C-SiPh_{2} \qquad (Me_{3}Si)_{2}C=C=C-SiPh_{2}SiPh_{2}OMe$$

$$(Me_{3}Si)_{2}C-SiPh_{2} + MeOH \longrightarrow CH(SiMe_{3})_{2}$$

$$+ (Me_{3}Si)_{2}C=C=CHC(SiMe_{3})_{2}SiPh_{2}SiPh_{2}OMe$$
[183]

Protolysis reactions of 1-silylsilacyclopropanes and 1-silylsilacyclopropenes are described in refs [23,180, 182,184,293,294]. It was noted, however, that the sterically crowded 1,1,2,2-tetramesityl-phenyltrimethylsilyl- and -bis(trimethylsilyl)-exomethylene-1,2-disilacyclopropanes did not react with alcohols [22].

Protolysis of ferrocenyl-substituted OBMC of silicon and germanium proceeds under mild conditions and leads to the breaking of both M-M' and M-C bonds. At low HCl concentrations the main reaction products are disiloxanes (digermanoxanes), e.g. [191, 192]:

 $CpFeC_{5}H_{4}SiMe_{2}MMe_{3} + HC1/EtOH \longrightarrow CpFeC_{5}H_{4}SiMe_{2}OEt + Me_{3}MOEt$ $CpFeC_{5}H_{4}GeMe_{2}MMe_{3} + HC1/EtOH \longrightarrow (CpFeC_{5}H_{4}GeMe_{2})_{2}O$ (M,M'=Si,Ge)

The reaction seems to proceed through the formation of the ferricinium ion. Si_2Ph_6 , $Ph_3SiGePh_3$ And Ge_2Ph_6 were shown not to react with glacial HOAc at 140°C even in the presence of AlCl₃, but Ph_3MSnPh_3 (M=Si.Ge) reacted with the refluxing glacial HOAc to give (AcO)₃MSn(OAc)₃ (the intermediate $Ph_3GeSn(OAc)_3$ was also isolated) [40]. Similarly, $Sn_2(OAc)_6$ was obtained by acetolysis of Sn_2Ph_6 [58]. All the acetoxyl derivatives prepared were quite stable. Strong carboxylic acids split Ge_2Ph_6 to form either $RCO_2Ge_2Ph_5$ or $(RCO_2GePh_2)_2$ (R=CCl₃, CF₃, but not CH₃, $CH_2Cl)$ [92,224]. In contrast to Ge_2Ph_6 the C_6F_5 -containing digermanes react readily even with weak acids with the Ge-Ge--bond breaking [201]:

$$(C_6F_5)_3GeGeR_3 + HX \longrightarrow (C_6F_5)_3GeH + R_3GeX(R=C_6F_5, Et)$$

It was established [111] that Me₃SnGeMe₃ and Me₃SnSiMe₃ react with HCl (the first compound reacting at higher rates than the second one):

$$Me_{3}SnSiMe_{3} + HCl \longrightarrow Me_{3}SnCl + Me_{3}SiCl + H_{2}$$
$$Me_{3}SnGeMe_{3} + HCl \longrightarrow Me_{3}GeSnMe_{2}Cl + Me_{3}SnCl + Me_{3}GeCl + H_{2}$$

Si₂Me₆, Me₃SiGeMe₃ And Ge₂Me₆ undergo no cleavage when treated with HCl. The reaction of Sn_2Et_6 with HCl was carried out as early as in 1870, and gave Et_2SnCl_2 , C_2H_6 and H_2 [225]. Sn_2Et_6 Does not react with HOAc (or PhCO₂H) at 80°C, but at 135°C Et₃SnOAc, Et₂Sn(OAc)₂, C_2H_6 and H_2 can be obtained [227]. Reaction of Sn_2Et_6 and $\text{ClCH}_2\text{CO}_2\text{H}$ produces Et_2SnCl_2 , C_2H_6 , C_4H_{10} and CO_2 [228]. In MeOH solution Sn_2Me_6 reacts with HCl [226] and HBr [42] to form Me₃SnHal.

 Sn_2Ph_6 Was reported not to react with H_2SO_4 (in THF solution), but it does react with HCl to give Ph_3SnCl and H_2 [229]. On the other hand, reaction between Sn_2Ph_6 and HCl (in dry PhH) gave $(Ph_2SnCl)_2$ [230]. The compounds of $(RCO_2SnMe_2)_2$ type were synthesized with good yields from Sn_2Me_6 and RCO_2H (with R=CHF₂, CF₃, CH₂Cl, CHCl₂, CCl₃, but not CH₃, CH₂I, CBr₃) at low temperatures [175,231]. Highly sterically crowded Sn_2 [CH(SiMe₃)₂]₆ is cleaved by water to give [(Me₃Si)₂CH]₃SnOH [199].

Protolysis of Me_3MSnMe_3 (M=Si,Ge,Sn) was investigated in more detail [317]. Me_3SnCl Was shown to be the only product in the reaction of Sn_2Me_6 with HCl (in MeOH solution), while mixed OBMC react in two ways:

 $Me_3MSnMe_2C1 \longrightarrow Me_3MSnMe_3 + HC1 \longrightarrow Me_3MC1 + Me_3SnC1$ $Me_3MSnMe_2C1 \longrightarrow Me_3MC1 + Me_2Sn$ $Me_2Sn + 2HC1 \longrightarrow Me_2SnC1_2$

On the other hand, CF_3CO_2H leads to $CF_3CO_2SnMe_2MMe_3$ only (by NMR-spectroscopy), but attempted isolation gave $CF_3CO_2MMe_3$.

The protolysis reactions of Pb_2R_6 are characterized by the diversity of products; see [10]. Pb_2Ph_6 And HCl react at low temperatures to form merely Ph_3PbCl and $PbCl_2$; this can be accounted for by one of the two reaction pathways [91]:

$$Pb_2Ph_6 + HCl \longrightarrow Ph_5Pb_2Cl \longrightarrow Ph_3PbCl + Ph_2Pb$$

 $Ph_2Pb + 2HCl \longrightarrow PbCl_2$
or $Pb_2Ph_6 + 3HCl \longrightarrow Ph_2ClPbPbPhCl_2 \longrightarrow Ph_3PbCl + PbCl_2$

Acetolysis of Pb_2Ph_6 (in refluxing benzene or n-heptane) gave Ph_4Pb , Ph_3PbOAc , $Pb(OAc)_2$ and PhH; use of boiling HOAc results in $Ph_2Pb(OAc)_2$ and $Pb(OAc)_2$ [241]. MeC(O)SH Reacts similarly. Aqueous solutions of HOAc or HCOOH were employed to purify Et_4Pb from Pb_2Et_6 [236]. Ar_2PbX_2 Derivatives were obtained in the reaction of $Pb_2(4-MeC_6H_4)_6$ with nitrous and iso-butanoic acids [242]. Ph_2Ph_6 And maleic acid afforded Ph_2Pb -maleate [91].

The following pathway was proposed [243] for Pb₂Me₆ methanolysis:

 $Pb_{2}Me_{6} + MeOH \longrightarrow Me_{5}Pb_{2}OMe + MeH$ $Me_{5}Pb_{2}OMe \longrightarrow Me_{3}PbOMe + Me_{2}Pb$ $Me_{2}Pb + 2MeOH \longrightarrow Pb(OMe)_{2} + 2MeH$ $Pb_{2}Me_{6} + 2Me_{3}PbOMe \longrightarrow 3Me_{4}Pb + Pb(OMe)_{2}$ $Pb_{2}Me_{6} + 2MeOH \longrightarrow Me_{4}Pb + Pb(OMe)_{2} + 2MeH$

Acetolysis of Pb_2Ar_6 gives rise to Ar_3PbOAc , $Pb(OAc)_2$ and ArH[245]. The kinetic equation of the reaction $is:W=k[Pb_2Ar_6][HOAc]^n$ (n=3+3,5). The correlation was established between the acetolysis rate and the \mathcal{C} -values of the Ar-groups (except for 4- $-MeOC_6H_4$); $\mathcal{G} = -2,3$. The formation of $1,1,2-Ar_3Pb_2(OAc)_3$ as an isolated intermediate [245] was, however, experimentally refuted later [93]. The kinetics of the reactions between Pb_2Ar_6 and HCl were studied in [246]. The reactivity of five Pb_2Ar_6 compounds was shown to satisfy the Yukawa-Tsuno equation [247]: $\lg k/k_o = \oint [G + r(G + G)]$, with $\int e = -2.9$; r = 0.6. The rate-determining step for the reaction is the electrophilic replacement at the carbon atom (protodeplumbylation) by undissociated HCl.

III. LEWIS ACIDS

Reactions of OBMC with Lewis acids have been widely and thoroughly studied. Kumada et al. [250] have carried out the following reactions:

 $Si_{2}Me_{6} + Me_{3}SiX \longrightarrow Me_{5}Si_{2}X + Me_{4}Si(X=Cl,I)$ $Si_{2}Me_{6} + 2Me_{3}SiX \longrightarrow (Me_{2}SiX)_{2} + 2Me_{4}Si(X=Cl,Br)$ $Si_{2}Me_{6} + (Me_{2}SiCl)_{2} \xrightarrow{2Me_{5}Si_{2}Cl}$

The equilibrium is considerably shifted to the right-hand side $(K_e = 82,6)$, which makes it possible to use the reaction between si_2Me_6 and $(Me_2SiCl)_2$ for the synthesis of Me_5Si_2Cl [251]. si_2Me_6 On heating in the presence of AlCl₃ reacts with either Me_2SiCl_2 [252], or $MeSiHCl_2$ [253], or the "disilane fraction" [159] to form Me_2SiCl_2 . Reaction of Si_2Me_6 with Si_2Cl_6 leads to Me_2SiCl_2 , Me_3SiCl_3 , $Me_2ClSiSiMeCl_2$, $(Me_2SiCl_2)_2$ and $(MeSiCl_2)_2$ [119].

The data of [254] show that in the absence of a solvent the reaction of Si_2Me_6 with MCl_4 (M=Te, Ti, Se, Ge, Sn), as well as with PCl₅, FeCl₃ and SbCl₅ occurs with Si-Si-bond breaking. It should be noted, however, that the Si-Si-bond breaking in Si_2Me_6 under the action of such reagents as $SbCl_5$, GeCl₄ and $SnHal_4$, is somewhat unexpected, since these reagents usually break the C-M-bonds in the silicon and germanium OBMC. For instance, Si_2Me_6 and $SbCl_5$ react in CH_2Cl_2 solution to form Me_5Si_2Cl [255]. It was pointed out that a mixture of Si_2Me_6 with AlCl₃ and TiCl₄ (TiCl₃, VCl₄) catalyzes ethylene polymerization [256]. The reaction between Si_2Me_6 and SF_6 afforded $Me_2Si < S > SiMe_2$ [257]. The compounds of the type $R_3MSi < (R_3M=Ph_3Si, Ph_3Ge, Me_3Sn)$ readily reduce an alcoholic solution of $AgNO_3$ [258]. The reaction of $Me_3SiSi(Ph)CH_2CHCH_2OEt$ with $Et_2O.BF_3$ leads to $Me_3SiSiPh(F)CH_2CH=CH_2$ without Si-Si-bond splitting [182].

At elevated temperatures organodisilanes react with $CuCl_2$ to form the corresponding compounds R_3SiCl [261,262]; see also [131].

 $Hg(OAc)_2$ Reacts (on heating) with Si_2Me_6 and $Me_3SiSiPh_3$, but not with Si_2Ph_6 , to form R_3SiOAc and Hg. Si_2Me_6 And (MeSiEt₂)₂ react with NiCl₂ (NiBr₂) to give Alk₃SiHal. Heating of Me₃SiSiPh₃ with AgNO₃ resulted in the formation of silver, NO and siloxanes [261]. Reaction between Si_2Ph_6 and $AgNO_3$ requires a temperature of 230°C and leads to $(Ph_3Si)_2O$ and nitrogen axides; it is to be noted that Ph_4Si does not react under these conditions [61]. Reaction between Si_2Me_6 and Ge_2Me_6 with $Hg(OAc)_2$ (in the MeOH solution) lead to $(Me_3M)_2O$ and $Hg_2(OAc)_2$; under the reaction conditions the initially formed Me_3MOAc is hydrolyzed into $(Me_3M)_2O$. Sn_2Me_6 Gives Me_3SnOAc and $Hg_2(OAc)_2$ [153]. Ge_2Ph_6 Reduces AgNO₃ to Ag [19].

WCl₆ And MoCl₅ were found to break the M-M-bonds in OBMC:

$$M_2R_6 + WCl_6(MoCl_5) - 2R_3MCl + WCl_4(MoCl_3)(M=Si,Ge,Sn;R=Me,Pr)$$

The reactivity sequence is as follows: $Sn \gg Ge > Si$. Me_5Si_2Cl Reacts more slowly than Si_2Me_6 , but Me_5Si_2Ph reacts rapidly, the Si-Si- and Si-Ph-bonds being broken. Compounds with M-W bonds are possible intermediates in the reactions. A linear correlation was established between the rates of cleavage of unbranched polysilanes Si_nMe_{2n+2} (n=2,3,4,6) by WCl₆ (as well as of Ge_2Me_6) and the first IP of the donor organoelements [130,265]. The reaction mixture of Sn_2Bu_6 and WCl₆ was found to catalyze cyclopentene polymerization, but the yield of linear polymer (C_5H_8)_n is lower than in the case of catalysis with the mixture ($Bu_4Sn + WCl_6$) [172].

Kumada et al. have found the halogenomethyldisilane rearrangement catalyzed by AlHal₃. Thus $Me_5Si_2CH_2Cl$, when treated with AlCl₃, is rearranged into $Me_3SiCH_2SiMe_2Cl$, and $ClCH_2(SiMe_2)_2Cl$ into $CH_2(SiMe_2Cl)_2$ [86]. It is supposed that within the cation formed under the action of AlCl₃, the Me_3Si -group migrates, e.g.:

$$Me_3Si - SiMe_2 - CH_2^+ - Me_2Si^+ - CH_2 - SiMe_3$$

(see also Section II). Similarly, $Me_5Si_2CHCl_2$ when treated with AlCl₃ at 70-80°C is transformed into $Me_3SiCHClSiMe_2Cl$: at 140--150°C MeCH(SiMe_2Cl)₂ is formed (as a result of the subsequent Me-group migration) [107]; see also [108]. An analogous rearrangement takes place at -60° in the following reaction [195]: Me5Si2CH2OMe + BCl3 ---- Me3SiCH2SiMe2Cl + MeOBCl2

A number of ferrocenyl-containing OBMCs of silicon and germanium were oxidized (in MeOH solution) by dissolved oxygen in the presence of an Fe III catalyst to give the corresponding disiloxanes, or digermanoxanes. In the absence of O_2 the stoichiometric quantity of Fe III is required. The proposed reaction mechanism involves the M-M-bond breaking within the ferricinium salt [194]. In the presence of catalytic quantities of AlCl₃ at 235°C Si₂Et₆ disproportionates forming Si° and Et₄Si [267,268]. At 200° in the presence of AlCl₃, or AlBr₃, Ge₂Et₆ disproportionates forming Et₄Ge, (Et₂Ge)_n and (Et₂Ge)_n [269]. The following reaction was carried out:

The last two products are probably formed from V [262].

The reactions between Ge_2Alk_6 and MCl_4 have been studied [79, 80,273-276]. Thus Ge_2Et_6 at 200°C reacts with MCl_4 (M=C,Si,Ge, Sn) to give $\text{Et}_5\text{Ge}_2\text{Cl}$ and (or) $(\text{Et}_2\text{GeCl})_2$; Ge_2Bu_6 and GeCl_4 led to $\text{Bu}_5\text{Ge}_2\text{Cl}$. Ge_2Et_6 Reacts readily with SnCl_4 to form 100% of $\text{Et}_5\text{Ge}_2\text{Cl}$; by the reaction with two moles of GeCl_4 , $(\text{Et}_2\text{GeCl})_2$ was obtained. The regularities established are in good agreement with the electrophilic dealkylation rules exemplified earlier for Alk_4M . The following reactions are characterized by high selectivity:

 $\begin{array}{rcl} \mathrm{Me_{3}SiGeEt_{3} + SnCl_{4} & \longrightarrow & \mathrm{Me_{3}SiGeEt_{2}Cl} + \mathrm{EtSnCl_{3}} \\ \mathrm{Me_{3}GeGeEt_{3} + SnCl_{4} & \longrightarrow & \mathrm{Me_{2}ClGeGeEt_{3} + MeSnCl_{3}} \\ \mathrm{Et_{5}Ge_{2}Bu} + \mathrm{SnCl_{4} & \longrightarrow & \mathrm{Et_{3}GeGeEtBuCl} + \mathrm{Et_{2}ClGeGeEt_{2}Bu} + \mathrm{EtSnCl_{3}} \\ \mathrm{Me_{5}Ge_{2}Cl} & & & & & & & \\ \mathrm{Me_{5}Ge_{2}Cl} & & & & & & \\ \mathrm{SnCl_{4} & \longrightarrow & Et_{3}GeCcl_{2} & & & & \\ \mathrm{SnCl_{2} & (\mathrm{Me_{2}GeCl})_{2} & & & & & \\ \mathrm{SnCl_{2} & (\mathrm{SnCl_{4} & } \mathrm{GeCl})_{3} & & & & \\ \mathrm{SnCl_{4} & (\mathrm{SnCl_{4} & } \mathrm{GeCl})_{3} & & & & \\ \mathrm{SnCl_{4} & (\mathrm{SnCl_{4} & } \mathrm{GeCl_{3} & } \mathrm{SnCl_{4} & } \mathrm{GeCl_{3} & } \mathrm{SnCl_{4} & (\mathrm{SnCl_{3} & } \mathrm{SnCl_{4} & (\mathrm{SnCl_{3} & } \mathrm{GeCl_{3} & } \mathrm{SnCl_{4} & (\mathrm{SnCl_{3} & } \mathrm{SnCl_{3} & } \mathrm{SnCl_{4} & (\mathrm{SnCl_{3} & } \mathrm{SnCl_{3} &$

Razuvaev et al. [201, 205, 277] have studied the reactions between C_6F_5 -substituted digermanes and distannanes, and a series of Lewis acids. It was established for example that Ge_2R_6 (in this paragraph $R=C_6F_5$) reacts with $HgCl_2$ or $CuCl_2$ to form R_3GeCl and M_2Cl_2 . The effect of EtHgCl upon Ge_2R_6 resulted in R_3GeCl and $R_3GeHgEt$. The following reactions were also carried out: $R_3GeGeEt_3 + X_3MHal \longrightarrow R_3GeMX_3 + Et_3GeHal$ $(X_3MHal=R_3GeBr, Et_3SnCl, but not R_3SiBr, R_3SnBr)$ $R_3MSnEt_3 + R_3M'Br \longrightarrow R_3MM'R_3 + Et_3SnBr (M,M'=Ge, Sn)$ $R_2Ge(H)SnEt_3 + R_2GeHBr \longrightarrow (R_2GeH)_2 + Et_3SnBr$ $Ph_3GeSnEt_3 + PhClGe \longrightarrow Et_3SnCl + Ph_3Ge(Ph)Ge$ $Sn_2Et_6 + 2R_3SnBr \longrightarrow Sn_2R_6 + 2Et_3SnBr$

The last reaction was represented as involving $R_3SnSnEt_3$ as an intermediate. $R_3SnSnEt_3$ And $HgCl_2$ react to give Sn_2R_6 , Et_3SnCl and Hg° ; R_3SnCl , originating from the unstable $R_3SnHgCl$, is supposed to react further with the initial distantance to form Sn_2R_6 . Reactions between GeCl₄ and Ge₂R₆ (or $R_3GeGeEt_3$) produce $R_3GeGeCl_3$ capable (at 100°C) of disproportionating with the formation of R_3GeCl and $(GeCl_2)_n$. Ge_2R_6 And $SnCl_4$ led to R_3GeCl , which was tentatively ascribed to the decomposition of the originally formed $R_3GeSnCl_3$. Thus the reactions of C_6H_5 -containing OBMC with electrophiles proceed with M-M-bond breaking; the product composition is determined by the stability of the intermediate organobimetallic compound.

Organic distannanes and diplumbanes react readily with $AgNO_3$, reducing the latter to metallic silver [48-50,229,230,279-281, 286,288]. It was established [285] that Pb_2Ph_6 reacts with $AgNO_3$ to form the green-coloured complex $[Ag_2(Pb_2Ph_6)]^{+2}$, the latter being stable at low temperatures. The complex decomposes quantitatively into Ag^{O} and Ph_3PbNO_3 . Silvermetric titration with Sn_2R_6 was employed to determine the distannane concentration in solution [82]. The kinetics of the reactions between Sn_2R_6 and Ag^+ (in the presence of pyridines) were investigated [284]; the reactivity follows the order

$$\begin{array}{ccc} \operatorname{Me_3SnSnPh_3} & \operatorname{Sn_2Pr_6} \\ & \gg \operatorname{Sn_2Et_6} > \operatorname{Et_3SnSnPh_3} > & > \operatorname{Sn_2Ph_6} > \operatorname{Sn_2(i-Pr)_6} \\ & \operatorname{Sn_2Me_6} & & \operatorname{Sn_Bu_6} \end{array}$$

The difference in oxidation rates made possible the separate silvermetric titration of the distannane pairs:

 $Sn_2Me_6 + Sn_2Et_6; Sn_2Et_6 + Sn_2Bu_6; Sn_2Me_6 + Sn_2Bu_6; Me_3SnSnPh_3 + Sn_2Ph_6$ [82,283].

 Sn_2Alk_6 Reduces BiBr₃ to Bi^o [295]. Reaction between Sn_2Me_6 and AuCl₃ led to Me₃SnCl and Me₂SnCl₂ [226]. Sn_2Ph_6 Is transformed into Ph₃SnCl when affected by CuCl₂, HgCl₂, SnCl₄, FeCl₃ [229]. Sn_2R_6 And HgCl₂ give R₃SnCl [42,49,285,295]. Tin and lead OBMC were observed to be reduced to R₃M⁺ by Hg₂(NO₃)₂ [308]. Reaction between Sn_2Et_6 and PhHgCl (at 150-160°C) produced PhSnEt₃ (38%), Et₃SnCl and Hg^o [296]. Sn_2Me_6 Reacts with Hg(CF₃)₂ to give Me₃SnCF₃, C₃F₆ and Me₄Sn. Si₂Me₆, Ge₂Ph₆ And Sn₂Ph₆ do not react with Hg(CF₃)₂; in reaction with Pb₂Ph₆ it has been possible to identify PhHgCF₃ [25].

Reactions of Sn_2R_6 with mercury salts were thoroughly studied [300]. The following schemes were proposed:

 $Sn_2Me_6 + HgCl_2 - Me_3SnCl + Me_3SnHgCl$ $Me_3SnHgCl - Me_3SnCl + Hg^{\circ}$ $Sn_2Me_6 + RHgX - Me_3SnX + Me_3SnHgR (- Me_3SnR + Hg^{\circ})$ $Me_3SnHgR + RHgX - Me_3SnX + R_2Hg + Hg^{\circ}$

Treatment of Pb_2Me_6 with MeHgCl resulted in the formation of Me_4Pb , Hg° , $PbCl_2$ and Me_2Hg (in case of CD_3HgCl , CD_3HgCH_3 is obtained). The reactions are considered to involve electrophilic atack on both the Pb-Pb-bond and the Pb-C-bond [301]. $Pb_2(c-C_6H_{11})_6$ And FeCl_3 led to $(c-C_6H_{11})_3$ PbCl and FeCl_2 [289]. $Pb_2(2,6-Me_2C_6H_3)_6$ And TlCl_3 produced Ar_2PbCl_2 and TlCl [287]. Reactions of Pb_2R_6 (where R=Me,Ph,4-MeC_6H_4) with TeCl_4 give R_2TeCl_2, R_2PbCl_2 and PbCl_2; Pb_2Ph_6 and a series of ArTeCl_3 produced PhArTeCl_2, Ph_2TeCl_2 and PbCl_2 [21]. Pb_2Ph_6 And Ar_3SbX_2(X=Cl,Br,NCS) were found to react with the formation of Ph_4Pb, Ph_2PbX_2 and Ar_3Sb [290].

The reaction of Pb_2Ph_6 with $HgCl_2$ and $Hg(OAc)_2$ gives Ph_3PbX , Ph_2PbX_2 , PbX_2 , and PhHgX. Both Ph_4Pb and Ph_3PbCl were observed to react 40-50 times slower than Pb_2Ph_6 . The proposed reaction scheme involves no initial Pb-Pb-bond cleavage:

 $Pb_2Ph_6 + HgX_2 \longrightarrow PhHgX + Ph_5Pb_2X$ $Ph_5Pb_2X \longrightarrow Ph_3PbX + Ph_2Pb$ $Ph_5Pb_2X + HgX_2 \longrightarrow (Ph_2PbX)_2 + PhHgX$ It was previously pointed out that the reaction between Sn_2Ph_6 and $SnCl_4$ leads to Ph_3SnCl and $SnCl_2$ [229]. The reaction between Sn_2Bu_6 and $SnCl_4$ results in Bu_3SnCl , Bu_2SnCl_2 and $SnCl_2$; this fact was explained by the oxidative decomposition of Sn_2Bu_6 at the Sn-Sn-bond; Bu_2SnCl_2 is the product of the further reaction [55]. Et_3SnCl , Et_2SnCl_2 , $EtSnCl_3$ and tristannane $ClEt_2SnSnEt_2SnEt_2Cl$ are formed in the reaction between Sn_2Et_6 and $SnCl_4$ [270]. The proposed reaction scheme implies no oxidative cleavage of the Sn-Sn-bond within the initial distannane:

 $\operatorname{Sn_2Et_6}$ + SnCl_4 \longrightarrow $\operatorname{Et_5Sn_2Cl}$ + EtSnCl_3 \longrightarrow ($\operatorname{Et_2SnCl}_2$ + $\operatorname{Et_2SnCl}_2$

 $\begin{array}{c} \operatorname{Et}_{5}\operatorname{Sn}_{2}\operatorname{Cl} & \longrightarrow & \operatorname{Et}_{3}\operatorname{Sn}\operatorname{Cl} + & \operatorname{Et}_{2}\operatorname{Sn} \\ (\operatorname{Et}_{2}\operatorname{Sn}\operatorname{Cl})_{2} & \longrightarrow & \operatorname{Et}_{2}\operatorname{Sn}\operatorname{Cl}_{2} + & \operatorname{Et}_{2}\operatorname{Sn} \\ (\operatorname{Et}_{2}\operatorname{Sn}\operatorname{Cl})_{2} + & \operatorname{Et}_{2}\operatorname{Sn} & \longrightarrow & \operatorname{Cl}\operatorname{Et}_{2}\operatorname{Sn}\operatorname{Sn}\operatorname{Et}_{2}\operatorname{Sn}\operatorname{Et}_{2}\operatorname{Cl} \end{array}$

An independent experiment confirmed the disproportionation reaction:

2(Et₂SnCl)₂ ----- Et₂SnCl₂ + ClEt₂SnSnEt₂SnEt₂Cl

 Sn_2Me_6 And $SnCl_4$ react to form Me_3SnCl_7 , Me_2SnCl_2 , $MeSnCl_3$ and $SnCl_2$, and this was accounted for by assuming the competing reactions of Sn-Sn- and Sn-C-bond cleavage [162]:

 $2Me_{3}SnCl + SnCl_{2} \longrightarrow Sn_{2}Me_{6} + SnCl_{4} \longrightarrow Me_{5}Sn_{2}Cl + MeSnCl_{3}$ $Me_{5}Sn_{2}Cl \longrightarrow Me_{3}SnCl + Me_{2}Sn$ $Me_{2}Sn + SnCl_{4} \longrightarrow Me_{2}SnCl_{2} + SnCl_{2}$

Reaction of Pb_2Ph_6 and $Pb_2(2-MeC_6H_4)_6$ with AlCl₃ led to Ar_4Pb and $PbCl_2$; the following reaction scheme was assumed [237,307]:

$$Pb_2Ar_6 + AlCl_3 - Ar_4Pb_2Cl_2 - Ar_4Pb + PbCl_2$$

Thus, cleavage of the Pb-C-bonds elone (and not Pb-Pb) was assumed under the action of AlCl₃. BF₃, MeBF₂ and B_2H_6 were found to catalyse the Sn_2Me_6 disproportionation [315]:

$$\operatorname{Sn}_{2}\operatorname{Me}_{6}$$
 — Me₄Sn + $\frac{1}{n}$ (Me₂Sn)_n

The reaction with BF₃ also led to $MeBF_2$ and Me_3SnBF_4 . Under forcing conditions the less methylated polystannanes corresponding to the empirical formulae $(Sn_5Me_2)_n$ and $(SnMe_{1,45})_n$ were obtained. The reactions of Sn_2Me_6 with BCl₃ and PhBCl₂ resulted in Me_4Sn , Sn^0 and RMeBCl (R=Cl,Ph) [316]. The reaction scheme suggested

$$RBCl_2 + Sn_2Me_6 \longrightarrow RClBSnMe_3 \longrightarrow RMeBSnMe_2Cl \longrightarrow Me_2Sn \longrightarrow Me_4Sn + Sn^{\circ}$$

involves an intramolecular exchanges of Cl- and Me-groups between B and Sn atoms. The possibility of dealkylation was not, however, discussed by the authors of [316].

It has been already mentioned that Si_2Et_6 and Ge_2Et_6 disproportionate when treated with AlHal₃ [267-269]. Razuvaev et al. [167,268,318] in 1960-63 extensively studied disproportionation of Sn_2Et_6 and Pb_2Et_6 under the effect of Lewis acids. For instance, AlCl₃ is an effective catalyst for disproportionation [318]:

 $2M_2Et_6 \longrightarrow 3Et_4M + M^\circ$ (M=Sn,Pb)

 Sn_2Bu_6 Disproportionates in a similar way [227]. In the case of Sn_2Et_6 (but not of Pb_2Et_6) perethylpolystannanes (Et_2Sn)_n can serve as reaction intermediates, and can be isolated [318].

From these data the conclusion can be drawn that the reactions

of organic distannanes and diplumbanes with non-oxidizing Lewis acids proceed generally by disproportionation and result in M-Mand M-C-bond cleavage. It is noteworthy that similar reactions of organic disilanes and digermanes (proceeding under more forcing conditions, or with more strong electrophiles) generally produce compounds of the types R_5M_2X , or XR_2M-MR_2X , whereas tin and lead OBMC produce no such compounds. (With certain reservations the same conclusion holds for OBMC protolysis; see Section II). The assumption that in the reactions involving Sn_2R_6 and Pb_2R_6 , the initially formed derivatives R_5M_2X or (and) $R_4M_2X_2$, disproportionate to give R_3MX (R_2MX_2) appears to be justified.

First, we should note the well known disproportionation of organic diplumbanes [16,91,127,243,319]:

$$2Pb_2R_6 \longrightarrow 3R_4Pb + Pb^{\circ}$$

The following scheme was proposed for Pb₂Me₆ disproportionation [16,243]:

$$Me_{3}Pb \longrightarrow PbMe_{2} \longrightarrow Me_{4}Pb + Me_{2}Pb$$

$$Me \longrightarrow Me \longrightarrow Me_{4}Pb + Me_{2}Pb \longrightarrow Me_{3}Pb \longrightarrow Pb \longrightarrow PbMe_{3} \longrightarrow 2Me_{4}Pb + Pb$$

$$Me \longrightarrow Me \longrightarrow Me_{3}Pb \longrightarrow Me_{3}Pb \longrightarrow PbMe_{3} \longrightarrow 2Me_{4}Pb + Pb$$

Thermolysis of $Me_3SnSnEt_3$ (at 190°C) resulted in Me_4Sn , Et_4Sn and metallic tin, and trace quantities of Sn_2Me_6 and Sn_2Et_6 were also detected [298]. Mixed OBMC - R_3PbMR_3 - are unstable [42,91, 167,286].

It is well known that organic derivatives of disilanes and digermanes having the general formula R_5M_2X or R_2XMMR_2X , disproportionate on heating [79,169,223,274]:

$$(\text{Me}_{2}\text{SiOMe})_{2} \longrightarrow \text{Me}_{2}\text{Si}(\text{OMe})_{2} + \text{MeO}(\text{SiMe}_{2})_{n}\text{OMe} \quad (n=3+5)$$

$$\text{Me}_{5}\text{Si}_{2}\text{CN} \longrightarrow \text{Me}_{3}\text{SiCN} + \text{Me}_{2n+1}\text{Si}_{n}\text{CN} \quad (n\leqslant8)$$

$$\text{Et}_{5}\text{Ge}_{2}\text{Cl} \longrightarrow \text{Et}_{3}\text{GeCl} + \text{Et}_{2n+1}\text{Ge}_{n}\text{Cl} \quad (n=3;4)$$

$$(\text{Et}_{2}\text{GeCl})_{2} \longrightarrow \text{Et}_{2}\text{GeCl}_{2} + \text{Cl}(\text{GeEt}_{2})_{3}\text{Cl}$$

The involvement of R₂Si(R₂Ge) in most of the reactions either has

been proved or is self-evident. The elimination of germylenes from organic germylstannanes was also reported [177,292].

 $(MeO)_3 GeSnBu_3 \longrightarrow Ge(OMe)_2 + Bu_3 SnOMe$ $GeXY + Bu_3 SnC1 \longrightarrow Bu_3 SnGeXYC1 (X, Y=Hal, RO)$ $XGeC1 + Me_3 SnR \longrightarrow RC1XGeSnMe_3 \longrightarrow Me_3 SnC1 + RGeX$ $(X=C1, Et; R=CC1_3, CH_2CH=CH_2)$

The susceptibility of tin-containing OBMC to disproportionation, in the first place, the decreased stability and increased reactivity of tin- and lead-containing organic compounds, in the second place, and, finally, the common phenomenon of disproportionation of substituted OBMC (e.g., of the R_5M_2X and $R_4M_2X_2$ type), enable one to suggest that it is the initial disproportionation of the compounds $R_nM_2X_{6-n}$ (n=4,5; M=Sn,Pb) that is responsible for the observed set of products.

Disproportionation of Et_5Sn_2Cl , Et_5Sn_2OH , and Bu_5Sn_2OAc proceeds readily at low temperatures [55]:

 $R_5 \operatorname{Sn}_2 \mathbb{X} \longrightarrow R_3 \operatorname{Sn} \mathbb{X} + \frac{1}{n} (R_2 \operatorname{Sn})_n.$

 $(Et_2SnCl)_2$ Disproportionates (at 20°C) to form Et_2SnCl_2 and $Cl(Et_2Sn)_3Cl$ [270]. Ph_4Pb And $Pb(OAc)_2$ were obtained on heating $(Ph_2SnOAc)_2$ [77]. Important results concerning the disproportionation of R_5Sn_2Hal and $R_4Sn_2Hal_2$ were achieved during the last decade, mainly by Neumann et al. Thus the compounds $(Bu_2SnX)_2$ (X=H,Cl,Br,OAc) disproportionate on heating, giving Bu_2SnX_2 and $(Bu_2Sn)_n$ [264]. $(Me_2SnCl)_2$ Disproportionates according to the same scheme even at room temperature [278]; $We_3SnSnEt_2Br$ is also unstable and undergoes disproportionation [154]. Et_5Sn_2Br Disproportionates at 100°C, and Me_5Sn_2Br at -30°C. Carrying out the disproportionation reaction in a medium of Et_4Sn , Sn_2Me_6 or Sn_2Et_6 results in the incorporation of the R_2Sn species into the sn-Sn and Sn-C-bonds of the organotin compounds to give peral-kylpolystennanes [278]. The equilibrium:

 $(Me_2SnBr)_2 = Me_2SnBr_2 + \frac{1}{n} (Me_2Sn)_n$

was found to be slow at 310 K in PhH or CHCl₃ solution [87] (see also [174,259]). The results are important for understanding the Sn_2Me_6 disproportionation reactions under the action of Me_3SnX ,

Me_SnCl, and some other similar Lewis acids.

 Sn_2Me_6 Disproportionates when treated with Me₃SnCl in MeOH solution to form Me₄Sn and a residue of (Me₂Sn)_n [51,226]. According to the kinetic equation:

 $W = k \left[Sn_2 Me_6 \right] \left[Me_3 SnCl \right]^{0,5}$

the catalytic reagent was concluded to be the dissociated form: Me₃SnCl \longrightarrow Me₃Sn⁺ + Cl⁻. The reactions:

 $\operatorname{Sn}_{2}\operatorname{Me}_{6}$ + $\operatorname{Et}_{3}\operatorname{SnCl}$ \longrightarrow $\operatorname{Et}_{3}\operatorname{SnMe}$ + $\operatorname{Me}_{3}\operatorname{SnCl}$ + $\frac{1}{n}$ $(\operatorname{Me}_{2}\operatorname{Sn})_{n}$ $\operatorname{Sn}_{2}\operatorname{Me}_{6}$ + $\operatorname{Me}_{2}\operatorname{SnCl}_{2}$ \longrightarrow $2\operatorname{Me}_{3}\operatorname{SnCl}$ + $\frac{1}{n}$ $(\operatorname{Me}_{2}\operatorname{Sn})_{n}$

were also carried out. Under these conditions Sn_2Et_6 does not react with Et_3SnCl [51].

Wells et al. [13-17] investigated the disproportionation of Sn_2Me_6 under the action of R_3SnHal , as well as a number of related transformations. Thus the nature of the catalysed disproportionation of Sn_2Me_6 under the action of Me_3SnHal was established [13]:

$$\operatorname{Sn_2Me_6}_{\operatorname{Me_3SnX}} \operatorname{Me_4Sn} + \frac{1}{n} (\operatorname{Me_2Sn})_n (X=Cl,Br,I)$$

The second order kinetics of the reaction (MeOH; 30⁰C; NMR spectroscopy) indicate catalysis by the undissociated Me₃SnX.

The following reaction was also carried out:

$$sn_2(CH_3)_6 + (CH_2=CH)_3 sncl \longrightarrow (CH_2=CH)_3 sncH_3 + (CH_3)_3 sncl + \frac{1}{n} [(CH_3)_2 sn]_n$$

The Sn-Sn-bonds are unaffected under the action of $(CH_2=CH)_3$ SnCl. A reinvestigation of the disproportionation of Sn_2Me_6 under the action of Me₃SnCl gives the following kinetics [14]:

$$W = k_2 [Sn_2Me_6] [Me_3SnCl] + k_{1,5} [Sn_2Me_6] [Me_3SnCl]^{0,5}$$

This corresponds to catalysis by both undissociated Me_3SnCl and the Me_3Sn^+ ion. $Sn_2(CH_3)_6$ and $(CD_3)_4Sn$ were found to react with $(CH_3)_3SnCl$ at similar rates which implies that the first stage of the reaction - the alkyl exchange -

 $Sn_2Me_6 + Me_3SnCl \longrightarrow Me_4Sn + Me_5Sn_2Cl$

is slow and rate-determining. Further, Me_5Sn_2Cl eliminates Me_2Sn , which inserts into the Sn-Sn- and Sn-Cl-bonds of the organotin compounds to give, ultimately, permethylpolystannanes. Permethylpolystannanes formed by disproportionation of Sn_2Me_6 under the effect of $(CD_3)_3SnCl$ (in MeOH solution) contain no CD_3 -groups. It follows that the Sn-Sn-bond in $Sn_2(CH_3)_6$ is unaffected by $(CD_3)_3SnCl$ since $(CH_3)_3SnSn(CD_3)_3$ formed in the latter case would disproportionate to give labelled $(Me_2Sn)_n$. It likewise follows that $(CH_3)_2Sn$ is not inserted into the Sn-C-bond of $(CD_3)_3SnCH_3$ formed at the first stage, since the $Sn_2(CH_3)_3(CD_3)_3$ produced would disproportionate to give labelled $(Me_2Sn)_n$ [14].

A parallel study of the disproportionation of Sn_2Me_6 was performed in [162]. The branched character of the permethylpolystannanes obtained was shown by the bromination method (see below). The sequence of the catalytic activity found for Me_3SnX was as follows: $BF_4 > NO_3 > Cl \sim Br$. The sequence of the solvent effect on the reaction rate (PhNO₂> PhCN ~ MeOH>PhH>1,4 dioxane) follows the order of the competing effect of the polar and solvating properties of solvents on the alkyl exchange rate at the tin atom. In polar solvents - PhCN and PhNO₂ - using NMR spectroscopy it has been possible to detect the $Me_5Sn_2BF_4$ intermediate resulting from the fast methyl exchange:

 $Sn_2Me_6 + Me_3SnBF_4 \longrightarrow Me_4Sn + Me_5Sn_2BF_4$

The proposed scheme for the disproportionation reaction is similar, on the whole, to that of the authors of [14], and involves elimination of Me_2Sn from Me_5Sn_2X followed by the stannylene incorporation reactions.

The following evidence was obtained by studying the reactions between Sn_2Me_6 and Me_2SnCl_2 [17]. The products obtained are Me_3SnCl and $(Me_2Sn)_n$, as well as the intermediate $(Me_2SnCl)_2$ which further undergoes disproportionation to give $(Me_2Sn)_n$. Reaction between $Sn_2(CH_3)_6$ and $(CD_3)_2SnCl_2$ leads to $(CH_3)_2SnCl_2$ and the CD_3 -containing permethylpolystannanes (mass spectrometry data). This fact was explained by elimination of Me_2Sn from the unstable Me_5Sn_2Cl formed, the former being able to incorporate reversibly into the reagents' bonds:

$$(CH_3)_2 Sn + (CD_3)_2 SnCl_2 \longrightarrow Cl(CH_3)_2 SnSn(CD_3)_2 Cl \longrightarrow (CH_3)_2 SnCl_2 + (CD_3)_2 Sn$$

Indeed, the (¹H, ¹³C, ¹¹⁹Sn)-NMR spectra reveal the broadening of the Me₂SnCl₂ and (Me₂SnCl)₂ resonance signals (unlike Sn_2Me_6 or Me₃SnCl), with (Me₂SnCl)₂ being shown to be a secondary source of Me₂Sn. It appears that Me₅Sn₂Cl serves as the principal source of Me₂Sn.

$$Sn_2Me_6 + Me_2SnCl_2 \longrightarrow Me_3SnCl + Me_5Sn_2Cl$$

$$Me_5Sn_2Cl \longrightarrow Me_3SnCl + Me_2Sn$$

$$Sn_2Me_6 + Me_2SnCl_2 \longrightarrow (Me_2SnCl)_2$$

$$Sn_2Me_6 + (Me_2SnCl)_2 \longrightarrow 2Me_5Sn_2Cl$$

$$Me_2SnCl_2 + (n-1)Me_2Sn \longrightarrow Cl(Me_2Sn)_nCl$$

$$Cl(Me_2Sn)_nCl + Sn_2Me_6 \quad (or Me_4Sn) \longrightarrow Sn_nMe_{2n+2}$$

A valuable comparative analysis of the reactivity of Sn_2Me_6 , Me₃SnCMe₃ and Me₄Sn, on the one hand, and Me₃SnCl, Me₂SnCl₂ and (Me₂SnCl)₂ on the other, was performed.

Reactions between Sn₂Me₆ and methyltin chlorides:

$$Sn_2Me_6 + Me_2SnCl_2 \longrightarrow 2Me_3SnCl + \frac{1}{n} (Me_2Sn)_n$$

 $\operatorname{Sn_2Me_6}$ + MeSnCl₃ ----- Me₃SnCl + Me₂SnCl₂ + $\frac{1}{n}$ (Me₂Sn)_n

also involve dealkylation followed by the subsequent disproportionation of Me_5Sn_2Cl formed. Reactions between $Me_3SiSnMe_3$ and Me_nSnCl_{A-n} (n=1-3) give $Me_3SiSnMe_2Cl$:

The reactivity sequence is $MeSnCl_3 > Me_2SnCl_2 > Me_3SnCl$. The rates of the reactions of $Me_3SiSnMe_3$, Sn_2Me_6 and Me_4Sn with each of three methyltin chlorides (in PhH, PhNO₂, or MeOH solution) are close to each other, which permits the conclusion that Me_3Si , Me_3Sn - substituents offer no steric hindrance (as compared with the Me group) to electrophilic dealkylation in RSnMe₃ (R=Me₃Si,

144

Me₂Sn) [162]. More recently reactions of Me₃MSnMe₃ (M=Si,Ge) with Me₃SnCl and Me₂SnCl₂ (in MeOH solution) were also investigated [186]: Me₃SiSnMe₃ + Me₃SnCl ---- Me₄Sn + Me₃SiSnMe₂Cl Me₃SiSnMe₂Cl ---- (Me₂Sn)_n + Me₃SiCl $Me_3SiSnMe_3 + Me_2SnCl_2 \longrightarrow Me_3SnCl + Me_3SiX + (Me_2Sn)_n + Me_4Sn$ Me₃GeSnMe₃ + Me₃SnCl ---- Me₃GeCl + (Me₂SnCl)₂ + Me₄Sn Me₃GeSnMe₃ + Me₂SnCl₂ ----- Me₃SnCl + Me₃GeCl + + (Me₂SnCl)₂ + Me₃GeSnMe₂Cl Sn₂Me₆ And Me₃PbCl react giving Me₄Sn, Me₄Pb and PbCl₂. The reaction mechanism is as follows [15]: $\operatorname{Sn}_2\operatorname{Me}_6$ + Me₃PbCl ----- Me₄Pb + Me₅Sn₂Cl Me₅Sn₂Cl ----- Me₃SnCl + Me₂Sn Me₃SnCl + Me₄Pb ----- Me₄Sn + Me₃PbCl Me_PbCl + Me_Sn ---- Me_PbSnMe_Cl ---- ClMe_PbSnMe_3 ---------- Me_SnCl + Me_Pb Me₂Pb + 2Me₃PbCl ---- 2Me₄Pb + PbCl₂ Reactions of Pb2Me6 with Me3SnCl and Me3PbCl are similar stoichiometrically: Pb2Me6 + 2Me3PbCl ---- 3Me4Pb + PbCl2 $Pb_{2}Me_{6} + 2Me_{3}SnCl - Me_{4}Pb + 2Me_{4}Sn + PbCl_{2}$ For the first reaction the kinetic equation obtained was:

$$W = (13,7\pm1,6) [Pb_2Me_6] [Me_3PbC1] + (0,21\pm0,03) [Pb_2Me_6] [Me_3PbC1]^{0.5}$$

thus Me_3PbCl and Me_3Pb^+ act as electrophiles. The corresponding rate constants for Me_3PbNO_3 are equal to (at $25^{\circ}C$) (24.05±0.04) l/mol.s, and (1.93±0.01) $1^{0.5}/mol.s^{0.5}$, respectively. Comparing the rate constants (k_2 and $k_{1.5}$) for Me_3PbCl and Me_3PbNO_3 , one can see that the latter reacts more readily because of the greater reactivity of undissociated Me_3PbNO_3 as compared with undissociated Me_3PbCl , and because of the greater degree of ionization of the nitrate as compared with the chloride. Other $Me_{3}PbX(X=OH,OMe,CN)$ compounds react (at lower rate) according to the same stoichiometric equation. The general reaction scheme was proposed [15]:

 $Pb_{2}Me_{6} + Me_{3}MC1 - Me_{4}M + Me_{5}Pb_{2}C1$ $Me_{5}Pb_{2}C1 - Me_{3}PbC1 + Me_{2}Pb$ $Me_{2}Pb + 2Me_{3}MC1 - 2Me_{4}M + PbC1_{2}$ $(Me_{3}SnC1 + Me_{4}Pb - Me_{4}Sn + Me_{3}PbC1)$

 Sn_2Me_6 Reacts with $Co_2(CO)_8$, $Mn_2(CO)_{10}$ and $Re_2(CO)_{10}$ according to the equation [233]:

$$Sn_2Me_6 + M_2(CO)_{2n} - 2Me_3SnM(CO)_n$$

Analogously, $\text{Et}_3 \text{SnCo}(\text{CO})_4$ and $\text{ClEt}_2 \text{SnCo}(\text{CO})_4$ are obtained from Sn_2Et_6 and $(\text{Et}_2\text{SnCl})_2$ respectively. In THF, with more pronounced solvating properties, the following reaction takes place [129]:

$$Sn_2Me_6 + Co_2(CO)_8 \longrightarrow 1, OMe_3SnCo(CO)_4 + 0, 5Me_4Sn + 0, 3Me_2Sn[Co(CO)_4]_2$$

It was observed that the first product does not disproportionate to yield the last two. In the presence of catalytic amounts (10%) of $\text{Co}_2(\text{CO})_8$, Sn_2Me_6 disproportionates to give Me₄Sn and "(Me₂Sn)_n" (the latter being branched permethylpolystannanes, as proved by the formation of Me₃SnBr, Me₂SnBr₂ and MeSnBr₃ by bromolysis). The following scheme was proposed for the disproportionation reaction:

The catalysts for the Sn_2Me_6 disproportionation are $\text{Mn}_2(\text{CO})_{10}$ and ICo(CO)_4 but not CoBr_2 . Sn_2Ph_6 , Sn_2Et_6 And Ge_2Et_6 undergo no disproportionation when treated with $\text{Co}_2(\text{CO})_8$ [129].

IV. TETRACYANOETHYLENE AND OTHER M -ACCEPTORS

In 1973 two groups of investigators [122,123] simultaneously discovered a donor-acceptor interaction of organobi- and polymetallic compounds of the IVB group with $C_2(CN)_4$ (TCNE) by observation of the charge transition bands (CTB) in the electronic absorption spectra. Within the donor-acceptor complexes formed the organo-element compounds are the σ -donors. The CTB energies correlate linearly with the IP of the electron-donors [122,123,125,130,209]. Upon irradiation, the TCNE anion-radical is formed, and its ESR signal is lost on termination of the irradiation [123]. Cyclic disilanes $Me_2Si(CH_2)_nSiMe_2(n=3-5)$ also form DAC with TCNE; E_{CT} correlates linearly with the activation enthalpies of the reaction of the cyclodisilanes used (as well as Si_2Me_6) and $3-ClC_6H_4CO_3H$ [124]:

$$\Delta H^{\neq} = 0.737 E_{cm} - 36.8 \text{ kcal/mol} (r = 0.991)$$

The DAC of aryl-containing organodisilanes with TCNE were also studied; it was shown that the regularities established on variation of IP and E_{CT} for organodi- and poly-silanes are well explained by the $\sigma\sigma$ - and $\sigma\pi$ -interactions within the OEC molecule [128,179]. Ge₂Ph₆ But not $(C_6F_5)_3$ GeGeEt₃ and $(C_6F_5)_2$ GeHGeH $(C_6F_5)_2$ yield CTB with TCNE [135].

Such compounds as $\operatorname{Bu}_4\operatorname{Ge}$, $\operatorname{Alk}_4\operatorname{Sn}$, $\operatorname{Sn}_2\operatorname{Alk}_6$, $\operatorname{Et}_4\operatorname{Pb}$ and $\operatorname{Me}_2\operatorname{Hg}$ turned out to form DAC with TCNE, too, as well as with quinones [122,125,130]. $\operatorname{Sn}_2\operatorname{Ph}_6$ [147] And $\operatorname{Sn}_2\operatorname{Me}_6$ [125,126] can reduce TCNE to the anion-radical; in the latter case the reaction is completed with the precipitation of a black sediment [123,130]. $\operatorname{Sn}_2\operatorname{Me}_6$ And $\operatorname{Sn}_2\operatorname{Bu}_6$ react with TCNE and TCNQ to give the ion pair $\operatorname{R}_3\operatorname{Sn}^+\operatorname{A}^-$ [139]. $\operatorname{Sn}_2\operatorname{Ph}_6$ Does not react with TCNE, while with TCNQ it can form the complex $[\operatorname{Sn}_2\operatorname{Ph}_6$. TCNQ] [139]. Under the action of TCNE and TCNQ, $\operatorname{Pb}_2\operatorname{Me}_6$ undergoes oxidative disproportionation to give the Pb^{2+} salts, $\operatorname{Me}_2\operatorname{Pb}$ and CH_4 [143].

The reaction of Sn_2Me_6 and TCNE was studied in more detail [141]. The reaction product is the complex $\text{Me}_3 \text{SnC}(\text{CN})_2 \text{C}(\text{CN})_2 \text{SnMe}_3$. THF (isolated from the CH_2Cl_2 solution in 70% yield), which, when kept or dissolved in THF, undergoes spontaneous conversion into $\text{Me}_3 \text{SnN}=\text{C}=\text{C}(\text{CN})\text{C}(\text{CN})_2^*$. Thus, it is homolysis of the unstable adduct that is responsible for the radical production in the reaction considered, and not a one-electron oxidation of the OBMC. Reactions between $\operatorname{Sn_2R_6}$ (R=Me,Bu,Ph) and chloranil, and other quinones give 1,4-C₆X₄(OSnR₃)₂ [139,146]^{**x**} The ESR spectral data enabled the authors to identify the intermediate radicals as semiquinones and aroxyls; the following reaction mechanism was proposed [146]:

$$sn_2R_6 + c_6x_4o_2 = DAC - [sn_2R_6^+, -c_6x_4o_2] - [R_3snoc_6x_4o, -snR_3] - 1,4-c_6x_4(osnR_3)_2$$

The reaction rates for quinones correlate with their electron affinities.

The interaction of 3,5- and 3,6-di-tert-butyl-1,2-benzoquinones with Sn_2R_6 (R=Me,Et,Bu,Ph) was also studied [144]. 4 Moles of quinone per 1 mole of Sn_2R_6 are involved in the reaction. The first stage of the process is the electron transfer, proved by the current generation of an electrochemical cell involving benzoquinone VI and Sn_2Et_6 . The ion-radical pair formed can yield the radical products:

VI + VII ----- 2VIII; R₃Sn⁺ VI ----- VIII

The radical VIII, involving a 5-coordinated tin atom, can react further, to give catechol derivatives.

9,10-Phenanthraquinone (IX) reacts at low temperature with Sn_2Me_6 and Pb_2Me_6 to give the radical X. The similar product, but only on heating, is provided by Pb_2Ph_6 . On the other hand, Pb_2Ph_6 and TCNE were found to form the DAC, $\lambda \stackrel{CTB}{=} 300$ nm. When max irradiating the mixture of Pb_2Ph_6 , TCNE and IX at 650 nm, where the DAC [Pb_2Ph_2 . TCNE] is the only absorbing species, the ESR spectrum reveals the radical X ($R_3M=Ph_3Pb$). In the absence of TCNE the irradiation does not lead to this product, while Pb_2Ph_6

^{*} $\operatorname{Sn_2Me_6}$ And chloranil also led to 1,4-C₆Cl₄(OSnMe₃)₂ (and not to 4-Me₃SnOC₆Cl₄O[•], as was previously suggested [139]) [146].

and quinone do not react at all. It thus seems to be established that it is the irradiation of the DAC within the charge-transfer band that results in the Pb₂Ph₅ homolysis. The following reaction scheme was proposed [145]:

$$Pb_{2}Ph_{6} + C_{2}(CN)_{4} \xrightarrow{hv} [Pb_{2}Ph_{6}^{+} - C_{2}(CN)_{4}]$$

$$\begin{bmatrix} Ph_{3}Pb \cdot Ph_{3}PbC_{2}(CN)_{4} \end{bmatrix}$$

$$Ph_{3}Pb \cdot Ph_{3}PbC_{2}(CN)_{4}$$

$$Ph_{3}Pb \cdot + IX \xrightarrow{X} X$$

V. PEROXIDE COMPOUNDS

Organodisilanes react smoothly with $PhCO_3H$ to give the corresponding disiloxanes with good yields. A linear correlation between lg k_2 and the σ^+ -constants of Ar substituents was established for the oxidation of six $ArSi_2Me_5$ compounds ($\rho = -0.29$) [320]. The activation parameters for the reactions studied were determined [64]. The kinetics of the reactions between $PhCO_3H$ and a wide series of disilanes was also investigated [156].

Reaction between $Me_5Si_2CH=CH_2$ and $3-ClC_6H_4CO_3H$ results in $Me_5Si_2CHCH_2O$ (the main product), $Me_3SiOSiMe_2CHCH_2O$ and $Me_3SiOSiMe_2CH=CH_2$. The first stage of the reaction is epoxidation of the C=C-bond, and the oxirane molety formed facilitates further oxidation of the Si-Si-bond. $Me_5Si_2CH_2CH=CH_2$ When treated with $3-ClC_6H_4CO_3H$ gives rise to $Me_3SiOSiMe_2CH_2CH=CH_2$ and $Me_5Si_2CH_2CH_2CHO$ (the product of acid-catalyzed rearrangement of $Me_5Si_2CH_2CHCH_2O$). $Me_5Si_2CH_2CH_2CH_2O$ (Me_5Si_2CH_2CH_2CH_2O). $Me_5Si_2CH_2CH_2CH_2O$ (Me_5Si_2CH_2CH_2O). $Me_5Si_2CH_2CH_2CH_2O$) and $Me_5Si_2CH_2CH_2O$.

A number of cyclic organodisilanes shown below are oxidized by $3-ClC_6H_4CO_3H$ to the corresponding disiloxanes [28,202,244, 310].

The disilacyclobutanes shown below are oxidized by $3-ClC_6H_ACO_3H$

to the corresponding disiloxanes when Ar=Ph [69,183], para- and meta-tolyl, and not when Ar is the sterically overcrowded ortho-tolyl [88].

Cyclic disilanes I, III react smoothly with $PhCO_3H$ and $(Me_3SiO)_2$ (with III being more active that I) to give the corresponding disiloxanes with unchanged configurations. Both cis- and trans-isomers of 9,10-dimethyl-9,10-disiladecalin are oxidized by the same reagents to form cis-disiloxanes, the yield from the trans-disilane (involving total stereomutation) being lower than from the cis-isomer [238,239]. The oxidation of a series of disilanes, $Me_nF_{3-n}SiSiMe_mF_{3-m}$ (n,m = 1 to 3) and $Me_2Si(CH_2)_kSiMe_2$ (k = 3 to 5), with (Me_3SiO)_2 give the corresponding disiloxanes [59]. The reaction:

$$Ge_2R_6 + Bu^{t}OOH - R_3GeOH + R_3GeOBu^{t} - R_3Ge)_2O + Bu^{t}OH (R=C_6F_5)$$

has been reported [201]. Reactions between OBMC and ozone are reviewed in [240].

The reaction between Sn_2R_6 and peroxides has been thoroughly studied. Sn_2Et_6 Reacts with $(\text{PhCO}_2)_2$ (in PhH) to give $\text{PhCO}_2\text{SnEt}_3$ (as the main product), and $(\text{PhCO}_2\text{SnEt}_2)_2$ 0. The reaction seems to proceed according to a latent-radical mechanism since the system Sn_2Et_6 + $(\text{PhCO}_2)_2$ initiates the polymerization of $\text{CH}_2=\text{CHCN}$ [167, 303,309]. The thermochemistry of the reaction

 $\operatorname{Sn}_2\operatorname{Et}_6 + (\operatorname{PhCO}_2)_2 \longrightarrow \operatorname{PhCO}_2\operatorname{SnEt}_3; \quad \Delta H = -(108\pm5)\operatorname{kcal/mol}$

has been studied [83]. Reactions of Sn_2Et_6 with acyl peroxides proceed according to the equation [167,234,235,303]:

Sn₂Et₆ + RCO₂OR' - RCO₂SnEt₃ + R'OSnEt₃

apparently without radical formation. The reaction between Sn_2Et_6 and $(Et_3Sn0)_2$ proceeds along both molecular and radical reaction pathways [263]:

$$sn_2Et_6 + (Et_3sn0)_2$$
 $Et_3sn' + (Et_3sn)_20 + Et_3sn0'$

Radical processes likewise contribute in the reaction [313]: $Sn_2Et_6 + Et_3SnOOBu^{t} - ---- (Et_3Sn)_20 + Et_3SnOBu^{t}$

Neumann et al. [314] reported a detailed study of the reaction of Sn_2Me_6 with Ac_2O_2 and $(\text{PhCO}_2)_2$. The main product of the first reaction (at 20°C) was Me_3SnOAc (95%); small quantities of CO_2 and Me_4Sn were also produced. In the presence of the radical inhibitor, $\text{Bu}^{\text{t}}\text{Br}$, Me_3SnOAc alone was formed (100%). $(\text{PhCO}_2)_2$ reacts with Sn_2Me_6 more slowly than Ac_2O_2 to give $\text{PhCO}_2\text{SnMe}_3$ as the main product. The by-products - Me_4Sn , Me_3SnPh and CO_2 result from the radical process, as proved through its inhibition with $\text{Bu}^{\text{t}}\text{Br}$, as well as by the ¹³C CIDNP technique. Sn_2Et_6 And Sn_2Bu_6 react with $(\text{PhCO}_2)_2$ in a similar way to Sn_2Me_6 . Pb_2Et_6 Reacts at high rates with the peroxide compounds according to the scheme [168]:

Pb2Et6 + ROOR' ---- Et3PbOR + Et3PbOR'

Bu₃PbOAc Was isolated in the reaction with HO_2Ac [193]. From Pb_2R_6 (R=Bu,Ph,4-MeC₆H₄) and R'CO₃H (R'=Me,n-C₇H₁₅,n-C₁₁H₂₃, BuEtCHCH₂,Ph) the six derivatives, R'CO₂PbR₃, were obtained; Pb_2Ph_6 and perphthalic acid reacted to give 2-Ph₃PbO₂CC₆H₄CO₂H [312].

VI. ELECTROPHILIC (AND OXIDIZING) REAGENTS OF OTHER TYPES

The compounds M_2Et_6 undergo dealkylation when reacted with (AlkHal + AlHal₃); the product composition is controlled by the stability of Et_5M_2 Hal (see Section III). Thus the reaction between Si_2Et_6 and i-PrBr in the presence of catalytic quantities of AlBr₃ gave Et_5Si_2Br (72%) [267]; Ge_2Et_6 under the same conditions gave Et_5Ge_2Br (50%), Et_4Ge and Et_3GeBr [269]. Sn_2Et_6 , i-PrCl and AlCl₃ react to give Et_3SnCl and Et_4Sn [318], and PrCl and PrBr react in the same way [268].

The organodisilanes Si_2Me_6 , Si_2Et_6 , $(Et_2SiMe)_2$ and $Me_3SiSiPh_3$ react with RCOCl and $(RCO)_2O$ in the presence of AlCl₃ to give ketones in fair yields [94]. Thus the reaction of $Me_3SiSiPh_3$ with EtCOC1 leads to PhCOEt (90%). The silicon-containing compounds were not isolated. Later, it was shown that, varying the reaction conditions, Me_5Si_2Cl (85%) 1,2- $Me_4Si_2Cl_2$ (87%), or 1,1,2- $Me_3Si_2Cl_3$ (74%) could be obtained from Si_2Me_6 and AcCl (with AlCl₃ as a catalyst) [157,196]. In the absence of Lewis acids Sn_2Me_6 reacts with CF₃COCl or (CF₃CO)₂O to give Me_4Sn , CF₃CO₂SnMe₃ and CO; the reaction with CF₃COI led to Me_3SnCF_3 (74%), Me_4Sn , Me_3SnI and CO [30]. Sn_2Et_6 Reacts with PhCOCl to form Et_3SnCl (as a main product), Et_2SnCl_2 and $PhCO_2C(Ph) =$ =C(Ph)O₂CPh [318].

MeSO₃SiMe₅ (50%) And Me₃SiCl were obtained by the reaction between Si_Me6 and ClSO3SiMe3; (MeSO3SiMe2) was also synthesized [260]. Sn₂Et₆ Reacts with PhSO₂Cl to give Et₃SnCl and Et_SnSO_Ph [167,318]. Reactions of Pb_Et₆ with SO₂Cl₂, SOCl₂, SC12 or S2C12 resulted in Et3PbCl [291]. The compounds Sn2R6 react with Ph₂S₂ to form R₃SnSPh; Me₂S₂ reacts more slowly [55]. Pb2Ph6 And Ph2S2 react to give Ph3PbSPh (and small quantities of PhAPb), the reaction being catalyzed by water. In a similar way, 4-ClC₆H₄SPbPh₃ was synthesized [91]. Reaction of Si₂Me₆ with 5-F-uracyl (150-160°C) produced 2,4-(Me₃Si)₂-5-F-uracyl, which was employed in the synthesis of heterocyclic compounds [148]. Nitration of $1,4-C_6H_4(Si_2Me_5)_2$ gave a mixture of unidentified products, which contained no $4-Me_5Si_2C_6H_4NO_2$, while the similar reaction of PhSi₂Me₅ produced a complex mixture of products involving PhNO₂ [150]. Reactions of a series of disilanes of general formula $R_2C=CHCH(X)Si_2Me_5$ (with X = R'S, PhSe) with $Me_30^{\dagger}BF_4^{-}$ proceed under mild conditions to give, as a result of the Me₃Si-shift, R₂C=CHCH(SiMe₃)SiMe₂F; the geometric configuration in this case is retained. A high degree of stereoselectivity was observed in the case of chiral E-Me(i-Pr)C=CHCH(Si₂Me₅)SR; though the stereochemical result remains to be seen [33].

N-Bromosuccinimide cleaves the Si-Si-bonds in Si_2Me_6 [311] and $(\text{Et}_2\text{SiMe})_2$ [262] (probably, by a molecular mechanism) to give R₃SiBr and R₃SiN(CH₂CO)₂; PhSi₂Me₅ and (PhSiMe₂)₂ react with NBS to form R₃SiBr, PhBr (small quantities), and (CH₂CO)₂NH [311]. The reaction between N-chlorosuccinimide and Sn₂Me₆ (as well as Sn₂Bu₆) was unambiguously proved to proceed through a radical-chain mechanism [26]. Me₃SbS Reacts with Sn₂Ph₆ and Sn₂(CH₂Ph)₆ to give (R₃Sn)₂S. Ph₃SbS Reacts in a similar manner with Sn₂Ph₆ (but not with Sn₂(CH₂Ph)₆); Ge₂Ph₆ and Si₂Ph₆ are unaffected by R_3SbS [133]. Pb_2Ph_6 Reacts with HOCl to give Ph_3PbCl [91,140]; Ph_3PbBr and $(4-MeC_6H_4)_3PbI$ were obtained through similar reactions [140]. M_2Ph_6 (M=Pb,Sn,Ge) React with $Se(SeCN)_2$ to form either $Ph_3PbSeCN$ or $Ph_3SnNCSe$; in the case of Ge_2Ph_6 no Ge-containing compounds were isolated. In all cases Se and (small quantities of) PhSeCN were formed [266]. $Sn_2(4-MeC_6H_4)_6$, Pb_2Ph_6 And $Pb_2(4-MeC_6H_4)_6$ react with (SCN)₂ to give Ar_3MNCS [176]. KMnO₄ Oxidizes Sn_2R_6 and Pb_2Ph_6 to give $(R_3M)_2O$ [49,55,91,248,289]; titration with KMnO₄ in acetone allows one to determine quantitatively Pb_2Et_6 in Et_4Pb [229].

The oxidation of distannanes, Sn_2Me_6 , Sn_2Bu_6 , Sn_2Ph_6 , and $Me_3SnSnPh_3$, by the Fe(III) complexes, $L_3Fe^{+3}3Clo_4^-$ (where L usually phenanthrolines) was studied. The reaction proceeds according to the equation:

$$sn_2R_6 + 2Fe^{+3} - 2R_3sn^+ + 2Fe^{+2}$$

The probable intermediates are cation-radicals $\text{Sn}_2 \text{R}^{+}_6$. The lg k₂ values correlate with the standard oxidation potentials $\text{E}^{0}_{\text{Sn}_2 \text{R}_6}$ All the systems studied obey the correlation:

$$\log k_2 = -1,29\Sigma \sigma^* + C_L;$$

where σ^{π} is the value of Taft's constant for the substituent R; C_L is the reaction ratio for L_nFe⁺³. The correlation between E_{act} and free energies for the total charge transfer was established; the slope of 0.44 corresponds to the outersphere oxidation mechanism [181].

CONCLUSIONS

The most general regularities of OBMC reactions with electrophilic reagents are summarized below. Such oxidants as halogens, peroxides, metal salts (Ag^+ , Hg^{+2} , Pb^{+4} etc.) lead to oxidative cleavage of the M-M-bond in OBMC producing R_3MX . Non-oxidizing electrophiles such as Brönsted and Lewis acids usually give R_5M_2X and/or $R_4M_2X_2$ as a result of OBMC dealkylation. These compounds are quite stable in the case of silicon and germanium derivatives, and are unstable in the case of organic distannanes and diplumbanes. The distannanes undergo disproportionation to give R_3SnX (R_2SnX_2) and peralkylpolystannanes, and R_4Pb and PbX₂(or Pb⁰) are formed from diplumbanes. The reactivity follows the same order (Pb > Sn > Ge > Si) for both oxidation and dealkylation of OBMC.

REFERENCES

- 1. H.Gilman and G.L.Schwebke. Adv.Organometal.Chem. 1(1964)90.
- 2. G.Schott. Fortsch.Chem.Forsch. 9(1967)60.
- 3. M.Kumada and K.Tamao. Adv.Organometal.Chem. 6(1968)19.
- 4. E.Hengge. Top.Curr.Chem. 51(1974)1.
- 5. C.Eaborn. Organosilicon Compounds. Chapter 12, Butterworth, London and Washington, 1960; V.Bazant, V.Chvalovsky, J.Rathovsky. Organosilicon compounds, Vol.1, Chapter 8. Czechoslovak acad. of science, Prague, 1965.
- D.Quane and D.S.Bottei. Chem. Rev. 63(1963)403; F.Glockling. Quart. Rev. (London) 20(1966)45.
- 7. V.F.Mironov and T.K.Gar. Organicneskie soedineniya germaniya. Glava 5, § 3. "Nauka", Moskva, 1967; F.Glockling. Chemistry of germanium, organic and inorganic. Academic Press, New York, 1969; M.Lesbre, P.Mazerolles and J.Satge. The organic compounds of germanium. Wiley, London and New York, 1971.
- 8. R.Ingham, S.R.Rosenberg and H.Gilman. Chem. Rev. 60(1960)459.
- 9. R.C.Poller. Compounds Containing Tin-Metal Bonds, Chapter 9. In: Chemistry of Organotin Compounds (ed. R.C.Poller). Logos, London, 1970; W.P.Neumann. The Organic Chemistry of Tin. Chaps. 11-13, 18. Wiley, London, 1971; A.K.Sawyer. Organotin compounds with Sn-Sn bonds (Ch.10); M.J.Newlands. Organotin compounds with tin-other metal bonds (Ch.11) - In: Organotin compounds (ed. A.K.Sawyer), vol.3, M.Dekker, New York, 1971.
- 10. H. Shapiro and F.W. Frey. The organic compounds of lead. Interscience publ. New York a.o., 1968.
- 11. H.Gilman, W.H.Atwell and F.K.Cartledge. Adv.Organometal. Chem. 4(1966)1; N.S.Vyazankin, G.A.Razuvaev and O.A.Kruglaya. Organometal.Chem.Rev. A3(1968)323; K.M.Mackay and R.Watt. Organometal.Chem.Rev. A4(1969)137; M.J.Taylor. Metal-to-Metal Bonded States of the Main Group Elements. Academic Press, London a.o., 1975.
- K.A.Kocheshkov, N.N.Zemlyanskii, N.I.Sheverdina and E.M.Panov. Metody elementoorganicheskoi khimii. Germanii, olovo, svinets. "Nauka", 1968; Organometallic compounds of the group IV elements (ed. A.G.MacDiarmid). Arnold, London; M.Dekker, New York, 1968; E.Rochow and E.W.Abel. The chemistry of germanium, tin and lead. Pergamon Press, New York, 1975.
- 13. D.C.McWilliam and P.R.Wells. J.Organometal.Chem. 85(1975)165.
- 14. D.P.Arnold, M.J.Cuthbertson and P.R.Wells. J.Organometal. Chem. 184(1980)39.
- D.P.Arnold and P.R.Wells. J.Organometal.Chem. 108(1976)345; 111(1976)285.
- 16. D.P.Arnold and P.R.Wells. J.Chem.Soc., Chem.Commun. (1975) 642.

154

- 17. M.J.Cuthbertson and P.R.Wells. J.Organometal.Chem. 216(1981) 331,349.
- 18. A.R.Gilbert, G.D.Cooper. US 2, 842, 580, July 8, 1958; Chem. Abstr. 52(1958)18216; B.A.Bluestein. US 2,709,176, May 24, 1955; Chem. Abstr. 49(1955)15284.
- 19. G.T.Morgan and H.D.K.Drew, J.Chem.Soc., 127(1925)1760.
- 20. M.Ishikawa, H.Sugisawa, M.Kumada, T.Higuchi, K.Matsui and K.Hirotsu. Organometallics, 1(1982)1473.
- 21. V.Kumar, P.H.Bird and B.C.Pant. Synth. React. Inorg.Metal-Org.Chem. 9(1979)203.
- 22. M.Ishikawa, H.Sugisawa, M.Kumada, T.Higuchi, K.Matsui, K.Hirotsu and J.Iyoda, Organometallics. 2(1983)174.
- 23. M.Ishikawa, S.Katayama and M.Kumada. J.Organometal.Chem. 248(1983)251.
- 24. C.A.Kraus, A.M.Neal. J.Amer.Chem.Soc. 51(1929)2403.
- 25. R.Eujen and R.J.Lagow. J.Chem.Soc., Dalton Trans. (1978)541.
- 26. P.M.Digiacomo and H.G.Kuivila. J.Organometal.Chem. 64(1973) 251.
- 27. R. Sommer, B. Schneider and W. P. Neumann. Ann. 692(1966)12.
- 28. T.J.Barton, J.A.Kilgour. J.Amer.Chem.Soc. 98(1976)7746.
- 29. A.J.Andy. Diss.Abstr.Int. B35(1974)2637; Chem.Abstr. 82(1975) 98083.
- 30. R.W.Cullen and G.E.Styan.Canad. J. Chem. 44(1966)1225.
- M.Kumada and M.Yamaguchi. J.Chem.Soc.Japan, Ind.Chem.Sect. 57(1954)175.
- 32. M.Kumada, K.Shiina and M.Yamaguchi. J.Chem.Soc.Japan. Ind. Chem.Sect. 57(1954)230.
- 33. H.Wetter. Helv.Chim.Acta, 61(1978)3072; H.Wetter, P.Scherer and W.B.Schweizer. Helv.Chim.Acta. 62(1979)1985.
- 34. C.A.Kraus and W.K.Nelson. J.Amer.Chem.Soc. 56(1934)195.
- 35. H.Gilman, R.K.Ingham and A.G.Smith. J.Org.Chem. 18(1953)1743.
- 36. S.Nitzsche and P.Buchheit. Ger.1, 054, 995, Apr 16, 1959; Chem.Abstr. 55(1961)6376.
- 37. C.A.Kraus and H.Eatough. J.Amer.Chem.Soc. 55(1933)5008.
- 38. C.A.Kraus and E.A.Flood. J.Amer.Chem.Soc. 54(1932)1635.
- J.A.Semlyen, G.R.Walder and C.S.G.Phillips. J.Chem.Soc. (1965)1197.
- 40. E.Wiberg, E.Amberger and H.Cambensi. Z.Anorg.Allgem.Chem. 351(1967)164.
- 41. W.P.Neumann and K.Kühlein. Tetrahedron Lett. (1966)3419.
- 42. C.A.Kraus and W.V.Sessions. J.Amer.Chem.Soc.47(1925)2361.
- 43. H.Söllrade, E.Hengge. J.Organometal.Chem. 243(1983)257.
- 44. G.J.M. van der Kerk and J.G.A.Luijten. J.Appl.Chem. 4(1954) 301.
- 45. E.Krause and R.Pohland. Chem.Ber. 57(1924)532.

- 46. K.K.Law. J.Chem.Soc. (1926)3243.
- 47. E.Krause and R.Becker. Chem.Ber. 53(1920)173.
- 48. J.Böeseken and J.J.Rutgers. Rec.Trav.Chim. 42(1923)1017.
- 49. G.Bahr and R.Gelius. Chem.Ber. 91(1958)825.
- 50. E.Krause and K.Weinberg. Chem.Ber. 62(1929)2235.
- 51. G.Tagliavini, G.Pilloni and G.Plazzogna. Ric.Sci. 36(1966) 114.
- 52. G.Gruttner and E.Krause. Chem.Ber. 49(1916)1415.
- 53. H.-U.Buschhaus, W.P.Neumann and T.Apoussidis. Ann. (1981) 1190.
- 54. W.P.Neumann, B.Schneider and R.Sommer. Ann. 692(1966)1.
- 55. H.M.J.C.Creemers. Ph.D.Thesis. Univ.Utrecht, 1967.
- 56. H.G.Kuivila and E.R.Jakusik. J.Org.Chem. 26(1961)1430.
- 57. A.K.Sawyer and H.G.Kuivila. J.Org.Chem. 27(1962)610.
- 58. E.Wiberg and H.Behringer. Z.Anorg.Allgem.Chem. 329(1964)290.
- 59. K.Tamao, M.Kumada and T.Takahashi. J.Organometal.Chem. 94(1975)367.
- 60. W.C.Schumb and H.H.Anderson. J.Amer.Chem.Soc. 59(1937)651.
- 61. T.T.Tsai, W.L.Lehn and C.J.Marshall, Jr.J.Org.Chem. 31(1966) 3047.
- 62. C.A.Kraus and L.S.Foster. J.Amer.Chem.Soc. 49(1927)457.
- 63. H.Gilman and G.E.Dunn. J.Amer.Chem.Soc. 73(1951)5077.
- 64. M.Kumada. Pure Appl.Chem. 13(1966)167.
- 65. H.Gilman and C.W.Gerow. J.Amer.Chem.Soc. 78(1956)5823.
- 66. H.Gilman and C.W.Gerow. J.Amer.Chem.Soc. 77(1955)5509.
- 67. T.C.Wu and H.Gilman. J.Org.Chem. 23(1958)913.
- 68. O.H.Johnson and D.M.Harris. J.Amer.Chem.Soc. 72(1950)5564; F.Glockling and K.A.Hooton. J.Chem.Soc. (1963)1849; A.Carrick and F.Glockling. J.Chem.Soc. A(1966)623.
- 69. M.Ishikawa, T.Fuchikami, M.Kumada, T.Higuchi and S.Miyamoto. J.Amer.Chem.Soc. 101(1979)1348.
- K.Tamao, M.Ishikawa and M.Kumada. J.Chem.Soc., Chem.Commun. (1969)73.
- 71. H.Gilman and C.W.Gerow. J.Org.Chem. 22(1957)334.
- 72. S.A.Kandil and A.L.Alired. J.Chem.Soc. A(1970)2987.
- 73. H.Zimmer, I.Hechenbleikner, O.H.Homberg and M.Danzic. J.Org. Chem. 29(1964)2632.
- 74. H.Zimmer, A.Bayless and W.Christopfel. J.Organometal.Chem. 14(1968)222.
- 75. G.Singh. J.Org.Chem. 31(1966)949.
- 76. H.Zimmer and O.H.Homberg. J.Org.Chem. 31(1966)947.
- 77. A.K.Sawyer, H.G.Kuivila. J.Amer.Chem.Soc. 82(1960)5958; 85(1963)1010.
- 78. H.Gilman and T.C.Wu. J.Amer.Chem.Soc. 75(1953)3762.

- 79. E.J.Bulten, J.G.Noltes. Tetrahedron Letters. (1966)3471.
- 80. E.J.Bulten and J.G.Noltes. J.Organometal.Chem. 15(1968)P18.
- 81. L.Riccoboni and L.Oleari. Ric.Sci., Rend. A3(1963)1031.
- 82. G.Tagliavini. Anal. Chim.Acta. 34(1966)24.
- 83. I.B.Rabinovich, V.I.Tel'noi, P.N.Nikolaev and G.A.Razuvaev. Dokl. AN SSSR. 138(1961)852.
- 84. G.Tagliavini, G.Plazzogna. Ric.Sci.Rend., A2(1962)356.
- 85. G.Tagliavini, U.Belluco and L.Riccoboni. Ric.Sci., Rend. A1(1961)338.
- 86. M.Kumada, J.-I.Nakajima, M.Ishikawa and Y.Yamamoto. J.Org. Chem. 23(1958)292.
- 87. B.Mathiasch. Synth.React.Inorg.Metal.-Org.Chem. 8(1978)103.
- 88. M.Ishikawa, K.Nishimura, H.Ochiai and M.Kumada. J.Organometal.Chem. 236(1982)7.
- 89. F.Glockling, J.R.C.Light and R.G.Strafford. J.Chem.Soc. A(1970)426.
- 90. K.Yamamoto and M.Kumada. J.Organometal.Chem. 35(1972)297.
- 91. L.C.Willemsens and G.J.M. van der Kerk. Investigations in the field of organolead Chemistry. Int.Lead Zinc Res.Organ., New York, 1965; G.J.M. van der Kerk. Ind.Eng.Cnem. 58(1966), N.10, p.29; L.C.Willemsens, G.J.M. van der Kerk. J.Organometal.Chem. 15(1968)117.
- 92. D.Simon, K.Haberle and M.Drager. J.Organometal.Chem. 267 (1984)133.
- 93. N.Kleiner and M.Drager. J.Organometal.Chem. 293(1985)323.
- 94. E.Frainnet, R.Calas and P.Gerval. Compt.Rend.Acad.Sci., ser.C. 261(1965)1329; E.Frainnet, R.Calas, P.Gerval, Y.Dentone and J.Bonastre. Bull.Soc.Chim.France (1965)1259.
- 95. D.Seyferth. J.Amer.Chem.Soc. 79(1957)2738.
- 96. R.C.Job and M.D.Curtis. Inorg.Nucl.Chem.Letters. 8(1972)251.
- 97. P.Mazerolles, M.Lesbre and M.Joanny. J.Organometal.Chem.16 (1969)227.
- 98. H. Sakurai, Y. Nakadaira, M. Kira and H. Tobita. Tetr. Letters. (1980)3077; H. Sakurai, H. Tobita, M. Kira and Y. Nakadaira. Angew. Chem. Int. Edit. 19(1980)620; see also: H. Sakurai. Jpn. Kokai Tokyo Koho J P 81.110.692 (Cl.CO7F7/08) 01 Sep 1981, Appl. 80/14, 169, 07 Feb 1980; Chem. Abstr. 96(1982)35531.
- 99. L.E.Gusel'nikov, Yu.P.Polyakov and N.S.Namyotkin. Dokl. AN SSSR. 253(1980)1133.
- 100. K.Tamao, M.Kumada and A.Noro. J.Organometal.Chem. 31(1977) 169.
- 101. L.Birkofer, V.Foremny and G.Schmidtberg. J.Organometal.Chem. 142(1977)C37.
- 102. F.S.Kipping. J.Chem.Soc. 127(1921)647.
- 103. U.Stolberg. Chem.Ber. 96(1963)2798.
- 104. L.H.Sommer, K.T.Rosborough. J.Amer.Chem.Soc. 89(1967)1756; 91(1969)7067.
- 105. K.Triplett and M.D.Curtis. J.Organometal.Chem. 107(1976)23.

- 106. M.Kumada. Japan 4966 ('58), July 3, 1959; Chem.Abstr. 53 (1959)19880.
- 107. M.Kumada and M.Ishikawa. J.Organometal.Chem. 1(1964)411.
- 108. K. Tamao, M. Kumada. J. Organometal. Chem. 30(1971)339.
- 109. J.B.Pedley, H.A.Skinner and C.L.Chernick. Trans.Far.Soc. 53(1957)1612.
- 110. T.N.Bell, I.M.Davidson. J.Organometal.Chem. 162(1978)347.
- 111. C.F.Shaw III, A.L.Allred. Inorg.Chem. 7(1971)1340.
- 112. R.G.Pearson. Science. 15!(1966)172.
- 113. A.Takeda, M.Kumada and K.Tarama. J.Chem.Soc.Japan, Pure Chem.Sect., 78(1957)999.
- 114. D.N.Hague and R.H.Prince. J.Inorg.Nucl.Chem. 28(1966)1039.
- 115. J.Reffy, J.Nagy and I.Lazanyi. Period.Polytech.Chem.Eng. (1974)105.
- 116. E.Hengge and F.J.Krysl. Monatsh.Chem. 112(1981)731.
- 117. S.Boue, M.Gielen and J.Nasielski. Bull.Soc.Chim.Belges. 73(1964)864.
- 118. M.Gielen, J.Nasielski and G.Vandendunghen. Bull.Soc.Chim. Belges. 80(1971)165.
- 119. H.Schmolzer, E.Hengge. J.Organometal.Chem. 260(1984)31.
- 120. G.Tagliavini, S.Faleshini, G.Pilloni and G.Plazzogna. J. Organometal.Chem. 5(1966)136.
- 121. G.Plazzogna, V.Peruzzo and G.Tagliavini. J.Organometal. Chem. 24(1970)667.
- 122. V.F.Traven and R.West. J.Amer.Chem.Soc. 95(1973)6824.
- 123. H.Sakurai, M.Kira, T.Uchida. J.Amer.Chem.Soc. 95(1973)6826.
- 124. H.Sakurai and Y.Kamiyama. J.Amer.Chem.Soc. 96(1974)6192.
- 125. V.F.Traven and R.West. Zh.Obsch.Khim. 44(1974)1837.
- 126. V.F.Traven, V.F.Donyagina, I.G.Makarov, S.P.Kolesnikov, V.M.Kazakova and B.I.Stepanov. Izv. AN SSSR, ser.khim. (1977)1042.
- 127. P.R.Austin. J.Amer.Chem.Soc. 53(1931)1548; H.Gilman and J.C.Bailie. J.Amer.Chem.Soc. 61(1939)731; H.Gilman and E.B.Towne. J.Amer.Chem.Soc. 61(1939)739; G.Calingaert, H.Soroos and H.Shapiro. J.Amer.Chem.Soc. 64(1942)462.
- 128. V.F.Traven. O roli σ-orbitalei v organicheskikh soedineniyakh kremniya. V knige: Reaktsionnaya sposobnost' organicheskikh soedinenij. Vip. 103. Moskva, 1978, str.96-103; V.F.Traven. Dokt. diss. MKhTI, Moskva, 1981, and references therein.
- 129. E.J.Bulten and H.A.Budding. J.Organometal.Chem. 82(1974)121.
- 130. V.F.Donyagina. Diss. MKhTI, Moskva, 1976.
- 131. P.Mazerolles, M.Joanny, J.C.Maire and R.Gassend. J.Organometal.Chem. 87(1975)269.
- 132. H.Shirai, Y.Sato and J.Tyni. Yakugaku Zasshi. 90(1970)1232; Chem.Abstr. 74(1971)3368.

- 133. J.Otera, T.Kadowaki and R.Okawara. J.Organometal.Chem.19 (1969)213.
- 134. G.Calingaert and H.Soroos. J.Org.Chem. 2(1938)535.
- 135. M.A.Lopatin, V.A.Kuznetsov, A.N.Egorochkin, M.N.Bochkarev and A.V.Shabanov. Zh.Obsch.Khim. 50(1980)1757.
- 136. W.Kitching, H.A.Olszowy and G.M.Drew. Organometallics, 1(1982)244.
- 137. Zhiewen Zhang and Xiuzhong Zhou. Acta Chim. Sin. 42(1984)587.
- 138. N.V.Ushakov, V.M.Vdovin. Izv. AN SSSR, ser. khim. (1983) 1215.
- 139. A.B.Cornwell, P.G.Harrison and J.A.Richards. J.Organometal. Chem. 67(1974)C43; 140(1977)273.
- 140. L.C.Willemsens. Ger.Offen. 1, 912, 138 (Cl. C07f), 09 Oct. 1969; Neth. Appl. 15 Mar 1968; Chem.Abstr. 72(1970)67111.
- 141. O.A.Reutov, V.I.Rosenberg, V.A.Nikanorov and G.V.Gavrilova. Dokl. AN SSSR. 237(1977)608; O.A.Reutov, V.I.Rosenberg, G.V.Gavrilova and V.A.Nikanorov. J.Organometal.Chem.177 (1979)101.
- 142. H.Matsumoto, S.Koike, I.Matsubara, T.Nakano and Y.Nagai. Chem.Letters. (1982)533.
- 143. A.W.S.Dick, A.K.Holliday and P.J.Puddephatt. J.Organometal. Chem. 96(1975)C41.
- 144. G.A.Razuvaev, V.A.Tsarjapkin, L.N.Gorbunova, V.K.Cherkasov, G.A.Abakumov and E.S.Klimov. J.Organometal.Chem. 174(1979) 47.
- 145. K.Mochida, J.K.Kochi, K.S.Chen and J.K.S.Wan. J.Amer.Chem. Soc. 100(1978)2927.
- 146. S.Kozima, H.Fujita, T.Hitomi, K.Kobayashi, K.Kobayashi-Kuno and M.Kawanisi. Bull.Chem.Soc.Japan. 53(1980)2953.
- 147. P.J.Krusic, H.Stocloza, L.E.Manzer and P.Meakin. J.Amer. Chem.Soc. 97(1975)667.
- 148. M.Yasumoto, S.Hashimoto and S.Fujii. Japan Kokai 77, 77.072. 29 Jun. 1977; Appl. 75/154. 162, 22 Dec 1975; Chem.Abstr. 87 (1977)201575; H.Makayama and M.Ishikawa. Japan Kokai 77, 108, 989.12 Sep 1977, Appl. 76/24. 430.06 Mar 1976; Chem. Abstr. 98(1978)190877.
- 149. A.G.Brook, J.W.Harris, J.Lennon and M.El Sheikh. J.Amer. Chem.Soc. 101(1979)83.
- 150. H.Sakurai, H.Sygiyama, M.Kira and K.Tamamoto. J.Organometal. Chem. 225(1982)163.
- 151. A.Herman, B.Dreczewski and W.Wojnowski. J.Organometal.Chem. 251(1983)7.
- 152. T.A.Dixon, K.P.Steele and W.P.Weber. J.Organometal.Chem. 231(1982)299.
- 153. J.S.Thayer. Synth.React.Inorg.Metal-Org.Chem. 8(1978)371.
- 154. C.Grugel, W.P.Neumann, J.Sauer and P.Seifert. Tetrahedron Lett. (1978)2847.
- 155. H.D.Kaesz, J.P.Phillips and F.G.A.Stone. J.Amer.Chem.Soc. 82(1960)6228.

- 156. G.A.Razuvaev, T.N.Brevnova, V.V.Semenov. Zh.Obsch.Khim. 50 (1980)1806; J.Organometal.Chem. 271(1984)261; V.V.Semenov, T.N.Brevnova, S.Ya.Horshev. Zh.Obsch.Khim. 53(1983)2085; G.A.Razuvaev, V.V.Semenov, T.N.Brevnova and A.H.Kornev. J.Organometal.Chem. 287(1985)C31.
- 157. H.Sakurai, T.Watanabe, M.Kumada. J.Organomet. Chem.7 (1967) P15
- 158. M.Ishikawa, S.Matsuzawa. Chem.Commun. (1985)588.
- 159. R.G.Gordon. US 4,289, 890 (Cl.556-430, C07F7/08), 15 Sep 1981, Appl. 11,079 12 D Feb 1979; 5 pp; Cont.-in-part of US ser. N 11,079; Chem.Abstr. 95(1981)204147.
- 160. Yu.G.Bundel, S.I.Bobrovskii, I.A.Novikova and O.A.Reutov. Izv. AN SSSR, ser. khim. (1979)925.
- 161. Yu.G.Bundel, S.I.Bobrovskii, V.V.Smirnov, I.A.Novikova, G.B.Sergeev and O.A.Reutov. Izv. AN SSSR, ser.khim. (1979) 2129.
- 162. S.I.Bobrovskii. Diss. MGU, Moskva, 1982.
- 163. S.I.Bobrovskii and Yu.G.Bundel. Vestnik MGU, Khimia, 26(1985)420.
- 164. Yu.G.Bundel, G.B.Sergeev, V.K.Piotrovskii, V.V.Smirnov, S.I.Bobrovskii, V.I.Rosenberg and O.A.Reutov. Izv. AN SSSR, ser. khim. (1977)1688.
- 165. S.Fukuzumi and J.K.Kochi. J.Amer.Chem.Soc. 102(1980)2142; J.Phys.Chem. 84(1980)608, 617, 2246, 2254.
- 166. H.Zimmer, O.A.Homberg and M.Jayawant. J.Org.Chem. 31(1966) 3857.
- 167. N.S.Vyazankin, G.S.Kalinina, O.A.Kruglaya and G.A.Razuvaev. Zh.Obsch.Khim. 38(1968)906.
- 168. Yu.A.Alexandrov, T.G.Brilkina, A.A.Kvasov, G.A.Razuvaev, V.A.Shushunov. Dokl. AN SSSR, 129(1959)321.
- 169. W.P.Neumann and J.Fu. J.Organometal.Chem. 273(1984)295.
- 170. T.N.Bell, K.A.Perkins and P.G.Perkins. J.Organometal.Chem. 217(1981)311.
- 171. J.V.Urenovitch and A.G.MacDiarmid. J.Amer.Chem.Soc. 85 (1963)3372.
- 172. P.R.Hein. J.Polym.Sci., Polym.Chem. Ed. 11(1973)167.
- 173. K.Shiina. J.Organometal. Chem. 310(1986)C57.
- 174. M.Engel and M.Devand, J.Organometal.Chem. 307(1986)15.
- 175. S.Adams, M.Dräger and B.Mathiasch. J.Organometal.Chem. 326(1987)173.
- 176. S.N.Bhattacharya, P.Rao and R.C.Srivastava. J.Organometal. Chem. 87(1975)279.
- 177. J.Satge and G.Dousse. J.Organometal.Chem. 61(1973)C26.
- 178. M.Kumada, M.Yamaguchi, Y.Yamamoto, J.Nakajima and K.Shiina. J.Org.Chem. 21(1956)1264; Tokyo Shibaura Electric. Co. Ltd. (by M.Kumada), 1073 ('59) March 3, 1960. Chem.Abstr. 54 (1960)8634.
- 179. A.Herman, B.Dreczewski, W.Wojnowski. J.Organometal.Chem. 339(1988)41.

- 180. M.Ishikawa, K.-I.Nakagaka and M.Kumada. J.Organometal. Chem. 131(1977)C15.
- 181. A.Peloso. J.Organometal.Chem. 67(1974)423; 74(1974)59.
- 182. M.Ishikawa, K.-I.Nakagawa and M.Kumada. J.Organometal. Chem. 214(1981)277.
- 183. M.Ishikawa, D.Kovar, T.Fuchikami, K.Nishimura, M.Kumada, T.Higuchi and S.Miyamoto. J.Amer.Chem.Soc. 103(1981)2324.
- 184. M.Ishikawa, K.Nakagawa, S.Katayama and M.Kumada. J.Amer. Chem.Soc. 103(1981)4170.
- 185. D.Seyferth and D.P.Duncan. J.Organometal.Chem. 111(1976)C21.
- 186. M.J.Cuthbertson and P.R.Wells. J.Organometal.Chem. 287(1985) 25.
- 187. M.Kumada and M.Ishikawa. J.Organometal.Chem. 6(1966)451.
- 188. M.Kumada, K.Tamao, T.Takudo and M.Ishikawa. J.Organometal. Chem. 9(1967)43.
- 189. K.Tamao, M.Ishikawa, M.Kumada. J.Chem.Soc., Chem.Commun. (1969) 43.
- 190. K.Tamao, M.Kumada and M.Ishikawa. J.Organometal.Chem. 31 (1971)17.
- 191. M.Kumada, K.Mimura, M.Ishikawa and K.Shiina. Tetrahedron Lett. (1965)83.
- 192. M.Kumada, T.Kondo, K.Mimura, M.Ishikawa, K.Yamamoto, S.Ikeda (in part) and M.Kondo (in part). J.Organometal. Chem. 43(1972)293.
- 193. J.C.Leebrick, A.L.Eilender and R.G.Veliz. J.Organometal. Chem. 18(1969)370.
- 194. T.Kondo, K.Yamamoto and M.Kumada. J.Organometal.Chem. 43 (1972)315.
- 195. K. Tamao and M. Kumada. J. Organometal. Chem. 30(1971)329.
- 196. H.Sakurai, K.Tominaga, T.Watanabe and M.Kumada. Tetrahedron Lett. (1966)5493.
- 197. M.Kumada, M.Ishikawa, K.Tamao. J.Organometal.Chem. 5(1966) 226.
- 198. M.Weidenbruch, K.Kramer, A.Schäfer and J.K.Blum.Chem.Ber. 118(1985)107.
- 199. M.F.Lappert, Pure Appl.Chem. 50(1978)703.
- 200. L.Birkofer, W.Wetziger. Chem.Ber. 106(1973)3595.
- 201. M.N.Bochkarev, G.A.Razuvaev, N.S.Vyazankin, O.Yu.Semenov. J.Organometal.Chem. 74(1974) C4; M.N.Bochkarev, G.A.Razuvaev, N.S.Vyazankin. Izv. AN SSSR, ser.khim. (1975)1820; M.N.Bochkarev, N.S.Vyazankin, L.N.Bochkarev, G.A.Razuvaev, VII Int.Conf.Organometal.Chem. Venice, Italy, 1975, p.168; J.Organometal.Chem. 110(1976)149; M.N.Bochkarev. Dokt.diss. Moskva, 1982.
- 202. S.Masamune, S.Murakami and H.Tobita. J.Amer.Chem.Soc. 105 (1983)7776.
- 203. N.M.K.El-Durini and R.A.Jackson. J.Chem.Soc.Perkin Trans.II, (1983)1275.

- 204. J.C.Thompson, J.L.Margrave. Inorg.Chem. 11(1972)913.
- 205. A.Castel, J.Escudie, P.Riviere, J.Satge, M.N.Bochkarev, L.P.Maiorova and G.A.Razuvaev. J.Organometal.Chem. 210 (1981)37.
- 206. K.Shiina, M.Kumada. J.Chem.Soc.Japan, Ind.Chem.Sec. 60 (1957)1395.
- 207. J.Barrau, M.El.Amine, G.Rima and J.Satge. J.Organometal. Chem. 277(1984)323.
- 208. M.Ishikawa, T.Fuchikami and M.Kumada. J.Organometal.Chem. 162(1978)223.
- 209. G.A.Razuvaev, T.N.Brevnova, V.V.Semenov, A.N.Kornev, M.A.Lopatin, G.V.Belisheva and A.N.Egorochkin. Izv. AN SSSR, ser.khim. (1985)2177.
- 210. K.Hayashi, J.Iyoda and I.Shiihara. J.Organometal.Chem. 10 (1967)81.
- 211. R.Calas, J.Dunogues and G.Deleris. J.Organometal.Chem. 71 (1974)317.
- 212. H.Watanabe, M.Kobayashi, Y.Koike, S.Nagashima, H.Matsumoto and Y.Nagai. J.Organometal.Chem. 128(1977)133.
- 213. Y.Nagai and H.Matsumoto. Japan Kokai 77,108,931, 12 Sep 1977, Appl. 76/24, 871 08 Mar 1976. Chem.Abstr. 88(1978) 105553.
- 214. H.Matsumoto, T.Motegi, M.Hasagawa and Y.Nagai. J.Organometal.Chem. 142(1977)149.
- 215. E.Hengge, G.Bauer, E.Brandstätter and G.Kollmann. Monatsh. Chem. 106(1975)887.
- 216. E.Hengge, G.Bauer and H.Marketz. Z.Anorg.Allgem.Chem. 394 (1972)93.
- 217. E.Hengge and D.Kovar. J.Organometal.Chem. 125(1977)C29.
- 218. H.Schmölzer and E.Hengge. J.Organometal.Chem. 225(1982)171.
- 219. M.Kumada, S.Sakamoto and M.Ishikawa. J.Organometal.Chem. 17(1969)235.
- 220. F.Höfler and E.Brandstätter. Monatsh.Chem. 106(1975)893.
- 221. F.Feher, P.Plichta and R.Guillery. Tetrahedron Lett. (1970) 2889.
- 222. F.Feher and P.Plichta. Inorg.Chem. 10(1971)609.
- 223. W.H.Atwell and D.R.Weyenberg. J.Organometal.Chem. 5(1966) 594; J.Amer.Chem.Soc. 90(1968)3438; W.H.Atwell, L.G.Mahone, S.F.Hayes, J.G.Uhlmann. J.Organometal.Chem. 18(1969)69.
- 224. F.Glockling and R.E.Houston. J.Chem.Soc. Dalton Trans. (1973)1357.
- 225. A.Ladenburg. Chem.Ber. 3(1870)353,647.
- 226. G.Tagliavini, U.Belluco and G.Pilloni. Ric.Sci., Rend., A33 (1963)889.
- 227. N.S.Vyazankin and V.T.Bichkov. Zh.Obsch.Khimii. 36(1966) 1684.

- 163
- 228. A.Ladenburg. Chem.Ber. 4(1871)19; Ann., Suppl. 8(1872)55.
- 229. T.T.Tsai and W.L.Lehn. J.Org.Chem. 31(1966)2981.
- 230. A.K.Sawyer and G.Belletete. Synth.Inorg.Metal-Org.Chem. 3(1973)301.
- 231. T.Birchall and J.P.Johnson. Canad.J.Chem. 57(1979)160.
- 232. M.Kumada. Japan Pat. 6624(1960); Chem.Abstr. 55(1961)6376.
- 233. E.W.Abel and S.Moorhouse. J.Organometal.Chem. 24(1970)687.
- 234. N.S.Vyazankin, G.A.Razuvaev, T.N.Brevnova. Zh.Obsch.Khim. 35(1965)2033.
- 235. N.S.Vyazankin, G.A.Razuvaev and T.N.Brevnova. Dokl. AN SSSR, 163(1965)1389; O.F.Rachkova, T.N.Brevnova and N.S.Vyazankin. Zh.Obsch.Khimii, 42(1972)1055.
- 236. C.D.Hedden and B.A.Rausch. U.S. Pat. 3. 072. 696; Jap. 8, 1963. Chem.Abstr. 59(1963)11560.
- 237. H.J.Emeleus and P.R.Evans. J.Chem.Soc. (1964)511.
- 238. K.Tamao, M.Kumada and T.Sugimoto. J.Chem.Soc., Chem.Commun. (1970)285.
- 239. K.Tamao and M.Kumada. J.Organometal.Chem. 31(1971)35.
- 240. Yu.A.Alexandrov, B.I.Tarunin. J.Organometal.Chem. 238(1982) 125.
- 241. A.W.Krebs and M.C.Henry. J.Org.Chem. 28(1963)1911.
- 242. K.A.Kocheshkov and E.M.Panov. Izv. AN SSSR. ser.khim. (1955)718
- 243. D.P.Arnold and P.R.Wells. J.Organometal.Chem. 111(1976)269.
- 244. F.P.Tsui and G.Zon. J.Organometal.Chem. 70(1974)C3.
- 245. V.G.Das, P.R.Wells. J.Organometal.Chem. 23(1970)143.
- 246. V.G.Das, Ng Seik Weng and L.N.Jan. J.Organometal.Chem. 157(1978)219.
- 247. Y.Yukawa and Y.Tsuno. Bull.Chem.Soc.Japan. 32(1959)971.
- 248. G.Bahr. Z.Anorg.Allgem.Chem. 256(1948)107.
- 249. E.Hengge and S.waldhör. Monatsh.Chem. 105(1974)671.
- 250. M.Ishikawa, M.Kumada and H.Sakurai. J.Organometal.Chem. 23 (1970)63; M.Kumada and M.Ishikawa. Japan 70 12,726 09 May 1970 Appl. 12 Aug 1968; Chem.Abstr. 73(1970)45594.
- 251. H.Sakurai, K.Tominaga and M.Kumada. Bull.Chem.Soc.Japan.39 (1966)1820.
- 252. Y.Nagai and H.Matsumoto. Japan Kokai 77,151,129(CL C07F7/12), 15 Dec 1977; appl. 76/66,231, 07 June 1976; Chem.Abstr. 88 (1978)105556.
- 253. R.J.Allani and J.P.Maniscalco. US 4,266.068 (Cl.556-430, C07F7/08), 05 May 1981, Appl. 172.606, 28 Jul. 1980, Chem. Abstr. 95(1981)62401.
- 254. R.C.Paul, A.Arneija and S.P.Narula. Inorg.Nucl.Chem.Lett. 5 (1969)1013.
- 255. E.Carberry, T.Keene and J.Johnson. J.Inorg.Nucl.Chem. 37 (1975)839.

- 256. H.Secomura, T.Yoshida and M.Otsuru. Japan 72 18,842, 31 May 1972; Appl. 69 68, 195, 28 Aug 1969. Chem.Abstr. 77(1972) 152904.
- 257. M.Weidenbruch and G.Roettig. Inorg.Nucl.Chem.Lett. 13(1977) 85.
- 258. C.S.Cundy, M.F.Lappert and C.-K.Yuen. Inorg.Chem. 17(1978) 1092.
- 259. L.-W.Gross, R.Moser, W.P.Neumann and K.-H.Scherping. Tetrahedron Lett. (1982)635.
- 260. P.Bouggeois, R.Calas and N.Duffant. Bull.Soc.Chim.France (1965)2694.
- 261. R.Calas, E.Frainnet and Y.Dentone. Compt.Rend.Acad.Sci., Ser.C, 259(1964)3777.
- 262. R.Calas, A.Marchand, E.Frainnet and P.Gerval. Bull.Soc. Chim. France. (1968)2478.
- 263. Yu.A.Alexandrov and V.A.Shuchunov. Dokl. AN SSSR. 140(1961) 595; Yu.A.Alexandrov and B.A.Radbil. Zh.Obsh.Khimii.36(1966) 543; Yu.A.Alexandrov. J.Organometal.Chem. 55(1973)1.
- 264. U.Schröer and W.P.Neumann. Angew.Chem.Int.Edit. 14(1975)246.
- 265. V.F.Traven, V.N.Karel'skii, V.F.Donyagina, E.D.Babich, V.M.Vdovin and B.I.Stepanov. Izn. AN SSSR, ser.khim. (1975) 1681; V.F.Traven, V.N.Karel'skii, V.F.Donyagina, E.D.Babich, B.I.Stepanov, V.M.Vdovin and N.S.Namyotkin. Dokl. AN SSSR, 224(1975)837.
- 266. E.E.Aynsley, N.N.Greenwood and M.J.Sprague. J.Chem.Soc. A(1966)1344.
- 267. G.A.Razuvaev, N.S.Vyazankin, O.S.D'yachkovskaya, I.G.Kiseleva and Yu.I.Dergunov. Zh.Obsch.Khim. 31(1961)4056.
- 268. N.S.Vyazankin, O.A.Kruglova, Yu.I.Dergunov and G.A.Razuvaev, "Kataliticheskie reaktsii v jidkoi fase" (Trudi I Vsesoyusnoi konferentsii). Izdatel'stvo AN Kasahskoi SSR, Alma-Ata, 1963, str. 416).
- 269. N.S.Vyazankin, E.N.Gladishev, S.P.Korneva and G.A.Razuvaev. Zh.Obsch.Khim. 34(1964)1645.
- 270. G.J.M. van der Kerk. Ann. N.Y. Acad.Sci. 239(1974)244.
- 271. D.Seyferth, E.W.Goldman and J.Escudie. J.Organometal.Chem. 271(1984)337.
- 272. B.C.Pant and W.E.Davidsohn. J.Organometal.Chem. 39(1972)295.
- 273. F.Rijkens, E.J.Bulten, W.Drenth and G.J.M. van der Kerk. Rec.Trav.Chim. 85(1966)1223.
- 274. E.J.Bulten and J.G.Noltes. J.Organometal.Chem. 16(1969)P8.
- 275. E.J.Bulten and W.Drenth. J.Organometal.Chem. 61(1973)179.
- 276. E.J.Bulten. Ph.D.Thesis. Utrecht, 1969.
- 277. M.N.Bochkarev, S.P.Korneva, L.P.Maiorova, V.A.Kuznetsov and N.S.Vyazankin. Zh.Obsch.Khim. 44(1974)308; M.N.Bochkarev, N.S.Vyazankin, L.P.Maiorova and G.A.Razuvaev. Zh.Obsch.Khim. 48(1978)2706; M.N.Bochkarev, L.P.Maiorova and G.A.Razuvaev. Zh.Obsch.Khim. 50(1980)903.

- 278. C.Grugel, W.P.Neumann and P.Seifert. Tetrahedron Lett. (1977)2205.
- 279. U.Belluco, G.Tagliavini and R.Barbieri. Ric.Sci. 30(1960) 1675.
- 280. T.Tsai, A.Cutler and W.L.Lehn. J.Org.Chem. 30(1965)3049.
- 281. U.Belluco and G.Tagliavini. Ric.Sci., Rend. A32(1962)102.
- 282. V.S.Petrosyan and A.B.Permin. Abstr. VII. Int.Conf.Organometal.Chem. (N. 250). Venice, Italy, 1975; V.S.Petrosyan. Dokt. diss. MGU, Moskva. 1979.
- 283. P.Zaia, V.Peruzzo and G.Plazzogna. Anal.Chim.Acta. 51(1970) 317.
- 284. G.Tagliavini, S.Faleshini and A.Genero. Ric.Sci. 36(1966) 717.
- 285. L.Doretti and S.Faleshini. Gazz.Chim.Ital. 100(1966)819.
- 286. R.E.Dessy, W.Kitching and T.Chivers. J.Amer.Chem.Soc. 88 (1966)453.
- 287. A.E.Goddard. J.Chem.Soc. 123(1923)1161.
- 288. A.K.Sawyer, W.B.Ewert and G.M.Brissey. Synth.React.Inorg. Metal.-Org.Chem. 6(1976)337.
- 289. G.Bähr. Z.Anorg.Allgem.Chem. 253(1947)330.
- 290. S.N.Bhattacharya and A.K.Saxena. Ind.J.Chem. 17A(1979)307.
- 291. U.Belluco, L.Cattalini, A.Peloso and G.Tagliavini. Ric. Sci., Rend., A3(1963)1107.
- 292. J.Barrau and J.Satge. J.Organometal.Chem. 148(1978)C9.
- 293. M.Ishikawa, K.-I.Nakagawa and M.Kumada. J.Organometal. Chem. 178(1979)105.
- 294. M.Ishikawa, H.Sugisawa, K.Yamamoto and M.Kumada. J.Organometal.Chem. 179(1979)377.
- 295. G.Gruttner. Chem.Ber. 50(1917)1808.
- 296. A.N.Nesmeyanov, K.A.Kozeschkov and V.P.Pusyreva. Zh.Obsch. Khim. 7(1937)118; K.A.Kozeschkov, A.N.Nesmeyanov and V.P.Pusyreva. Chem.Ber. 69(1936)1639.
- 297. M.Ishikawa, T.Fuchikami and M.Kumada. J.Organometal.Chem. 118(1976)139.
- 298. W.P.Neumann, E.Petersen and R.Sommer. Angew.Chem. 77(1965) 622.
- 299. N.P.Papisova, A.L.Goldshtein. Zh.Analit.Khimii. 16(1961) 508; A.L.Goldshtein, N.P.Papisova and L.M.Shtifman. Zh. Analit.Khimii. 17(1962)143.
- 300. D.C.McWilliam and P.R.Wells. J.Organometal.Chem. 85(1975) 335,347.
- 301. D.P.Arnold and P.R.Wells. J.Organometal.Chem. 113(1976)311.
- 302. V.G.K.Das, D.A.Moyes and P.R.Wells. J.Organometal.Chem. 33 (1971)31.
- 303. G.A.Razuvaev, N.S.Vyazankin and O.A.Schepetkova. Zh.Obsch. Khim. 30(1960)2498.

- 166
- 304. U.Christen and W.P.Neumann. J.Organometal.Chem. 39(1972)C58.
- 305. M.Buschhoff. Ger.Offen. 2,032,426; 2,032,299; Chem.Abstr. 76(1972)59756, 59754.
- 306. M.Buschhoff and A.Bokranz. Ger.Offen. 2,032,305. Chem. Abstr. 76(1972)85922.
- 307. H.Gilman and L.D.Apperson. J.Org.Chem. 4(1939)162.
- 308. U.Belluco, G.Tagliavini and P.Favero. Ric.Sci.Rend. A32 (1962)98.
- 309. G.A.Razuvaev, O.A.Schepetkova and N.S.Vyazankin. Zh.Obsch. Khimii, 32(1962)2152.
- 310. Y.Nakadaira and H.Sakurai, J.Organometal.Chem. 47(1973)61.
- 311. H.Sakurai, A.Hosomi, J.-I.Nakajima and M.Kumada. Bull. Chem.Soc.Japan. 39(1966)2263.
- 312. H.O.Wirth, R.Maul and H.H.Freidrich. Tetrahedron Lett. (1969)2959.
- 313. Yu.Alexandrov and B.V.Sul'din. Zh.Obsch.Khimii, 37(1967) 2350.
- 314. M.Lehning, W.P.Neumann and P.Seifert. J.Organometal.Chem. 162(1978)145.
- 315. A.B.Burg and J.R.Spielman. J.Amer.Chem.Soc. 83(1961)2267.
- 316. J.J.Eisch and H.P.Becker. J.Organometal.Chem. 171(1979)141.
- 317. M.J.Cuthbertson, D.W.Hawker and P.R.Wells. J.Organometal. Chem. 287(1985)7.
- 318. G.A. Razuvaev, N.S. Vyazankin, Yu.I. Dergunov and N.M. Pinchuk. Zh.Vses.Khim.Obschestva im. D.I.Mendeleeva, 5(1960)707; G.A. Razuvaev, N.S. Vyazankin, Yu.I. Dergunov and O.S. D'yachkovskaya. Dokl. AN SSSR, 132(1960)364; G.A. Razuvaev, N.S. Vyazankin and Yu.I. Dergunov. Zn. Obsch.Khim. 30(1960)1310; G.A. Razuvaev, N.S. Vyazankin, Yu.I. Dergunov and N.N. Vishinskii. Zh.Obsch.Khim. 31(1961)1712; G.A. Razuvaev. Zh. Vses. Khim.Obschestva im. D.I. Mendeleeva, 7(1962)325; G.A. Razuvaev, Yu.I. Dergunov, N.S. Vyazankin. Zh.Obsch.Khim. 32(1962) 2515; N.S. Vyazankin, G.A. Razuvaev and O.A. Kruglaya (Schepetkova). Izv. AN SSSR, ser.khim. (1962)2008.
- 319. G.A.Razuvaev, G.G.Petukhov and Yu.A.Kaplin. Zh.Obsch.Khim. 33(1963)2394; S.R.Garg and R.S.Ray. J.Indian Chem.Soc. (1973)27.
- 320. H. Sakurai, T. Imoto, N. Hayaschi and M. Kumada. J. Amer. Chem. Soc. 87(1965)4001.